Dielectric breakdown strength of epoxy bimodal-polymer-brush-grafted core functionalized silica nanocomposites

The central goal of dielectric nanocomposite design is to create a large interfacial area between the matrix polymer and nanofillers and to use it to tailor the properties of the composite. The interface can create sites for trapping electrons leading to increased dielectric breakdown strength (DBS). Nanoparticles with a bimodal population of covalently anchored molecules were created using ligand engineering. Electrically active short molecules (oligothiophene or ferrocene) and matrix compatible long poly(glycidyl methacrylate) (PGMA) chains comprise the bimodal brush. The dielectric breakdown strength was evaluated from recessed samples and dielectric spectroscopy was used to study the dielectric constant and loss as a function of frequency. The dielectric breakdown strength and permittivity increased considerably with only 2 wt% filler loading while the dielectric loss remained comparable to the reference epoxy.

[1]  Richard A. Vaia,et al.  Dielectric breakdown in silica-amorphous polymer nanocomposite films: the role of the polymer matrix. , 2013, ACS applied materials & interfaces.

[2]  F. Doğan,et al.  Dielectric properties of polymer-particle nanocomposites influenced by electronic nature of filler surfaces. , 2013, ACS applied materials & interfaces.

[3]  Ying Li,et al.  Bimodal surface ligand engineering: the key to tunable nanocomposites. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[4]  Xingyi Huang,et al.  Core-shell structured polystyrene/BaTiO3 hybrid nanodielectrics prepared by in situ RAFT polymerization: a route to high dielectric constant and low loss materials with weak frequency dependence. , 2012, Macromolecular rapid communications.

[5]  P. Bäuerle,et al.  Thiophene-based donor–acceptor co-oligomers by copper-catalyzed 1,3-dipolar cycloaddition , 2012, Beilstein journal of organic chemistry.

[6]  F. Diaz,et al.  Oxidation potential of thiophene oligomers: Theoretical and experimental approach , 2011 .

[7]  Richard W. Siegel,et al.  TiO2 nanocomposites with high refractive index and transparency , 2011 .

[8]  Damien Maillard,et al.  Polymer-grafted-nanoparticle surfactants. , 2011, Nano letters.

[9]  S. Chandrasekaran,et al.  10 years of click chemistry: synthesis and applications of ferrocene-derived triazoles. , 2011, Chemistry, an Asian journal.

[10]  O. Wolfbeis,et al.  Colloidal silica nanoparticles for use in click chemistry-based conjugations and fluorescent affinity assays , 2010 .

[11]  M. Pettersson,et al.  Dielectric properties and partial discharge endurance of polypropylene-silica nanocomposite , 2010, IEEE Transactions on Dielectrics and Electrical Insulation.

[12]  N. Turro,et al.  Cross-Linked ``Matrix-Free'' Nanocomposites from Reactive Polymer-Silica Hybrid Nanoparticles , 2010 .

[13]  David L. Burris,et al.  A quantitative method for measuring nanocomposite dispersion , 2010 .

[14]  F. Doğan,et al.  Improved Dielectric Breakdown Strength of Covalently-Bonded Interface Polymer–Particle Nanocomposites , 2010 .

[15]  R. Smith,et al.  Electrical behavior of particle-filled polymer nanocomposites , 2010 .

[16]  D. Bedrov,et al.  Dispersing nanoparticles in a polymer matrix: are long, dense polymer tethers really necessary? , 2009, Langmuir : the ACS journal of surfaces and colloids.

[17]  Yunpu Wang,et al.  Synthesis and characterization of end-functional polymers on silica nanoparticles via a combination of atom transfer radical polymerization and click chemistry , 2009 .

[18]  B. Benicewicz,et al.  Functionalization of Silica Nanoparticles via the Combination of Surface-Initiated RAFT Polymerization and Click Reactions , 2008 .

[19]  T. Fukushima,et al.  Amphiphilic molecular design as a rational strategy for tailoring bicontinuous electron donor and acceptor arrays: photoconductive liquid crystalline oligothiophene--C60 dyads. , 2008, Journal of the American Chemical Society.

[20]  W. Brittain,et al.  Combination of Living Radical Polymerization and Click Chemistry for Surface Modification , 2007 .

[21]  Anna C. Balazs,et al.  Nanoparticle Polymer Composites: Where Two Small Worlds Meet , 2006, Science.

[22]  C. Ryu,et al.  A Versatile Method To Prepare RAFT Agent Anchored Substrates and the Preparation of PMMA Grafted Nanoparticles , 2006 .

[23]  L. Schadler,et al.  Polymer nanocomposite dielectrics-the role of the interface , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[24]  G. Montanari,et al.  Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications , 2004, IEEE Transactions on Dielectrics and Electrical Insulation.

[25]  Helmuth Hoffmann,et al.  Click Chemistry on Surfaces: 1,3-Dipolar Cycloaddition Reactions of Azide-Terminated Monolayers on Silica , 2004 .

[26]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[27]  W. Brittain,et al.  Polymer brushes: surface-immobilized macromolecules , 2000 .

[28]  Bryan Dodson,et al.  The Weibull Analysis Handbook , 1994 .

[29]  S. Milner,et al.  Polymer Brushes , 1991, Science.

[30]  C. Koval,et al.  Ferrocene as an internal standard for electrochemical measurements , 1980 .

[31]  R. Fava Intrinsic electric strength and electromechanical breakdown in polythene , 1965 .

[32]  R. Huisgen 1.3‐Dipolare Cycloadditionen Rückschau und Ausblick , 1963 .

[33]  I.D.L. Ball The Intrinsic Electric Strength of Polyvinyl Alcohol and its Temperature Variation , 1951 .