A Survey of Computational Semantics: Representation, Inference and Knowledge in Wide-Coverage Text Understanding

The aim of computational semantics is to capture the meaning of natural language expressions in representations suitable for performing inferences, in the service of understanding human language in written or spoken form. First-order logic is a good starting point, both from the representation and inference point of view. But even if one makes the choice of first-order logic as representation language, this is not enough: the computational semanticist needs to make further decisions on how to model events, tense, modal contexts, anaphora and plural entities. Semantic representations are usually built on top of a syntactic analysis, using unification, techniques from the lambda-calculus or linear logic, to do the book-keeping of variable naming. Inference has many potential applications in computational semantics. One way to implement inference is using algorithms from automated deduction dedicated to first-order logic, such as theorem proving and model building. Theorem proving can help in finding contradictions or checking for new information. Finite model building can be seen as a complementary inference task to theorem proving, and it often makes sense to use both procedures in parallel. The models produced by model generators for texts not only show that the text is contradiction-free; they also can be used for disambiguation tasks and linking interpretation with the real world. To make interesting inferences, often additional background knowledge is required (not expressed in the analysed text or speech parts). This can be derived (and turned into first-order logic) from raw text, semistructured databases or large-scale lexical databases such as WordNet. Promising future research directions of computational semantics are investigating alternative representation and inference methods (using weaker variants of first-order logic, reasoning with defaults), and developing evaluation methods measuring the semantic adequacy of systems and formalisms.

[1]  Emanuele Pianta,et al.  Question Answering for Machine Reading Evaluation , 2010, CLEF.

[2]  Robert C. Moore Problems in Logical Form , 1981, ACL.

[3]  Patrick Pantel,et al.  DIRT @SBT@discovery of inference rules from text , 2001, KDD '01.

[4]  Rob A. van der Sandt,et al.  Presupposition Projection as Anaphora Resolution , 1992, J. Semant..

[5]  Johan Bos,et al.  Predicate logic unplugged , 1996 .

[6]  Katrin Erk,et al.  HALMANESER – A Toolchain For Shallow Semantic Parsing , 2006 .

[7]  Andrew Kehler,et al.  A Discourse Copying Algorithm for Ellipsis and Anaphora Resolution , 1993, EACL.

[8]  Peter D. Turney Similarity of Semantic Relations , 2006, CL.

[9]  Christoph Weidenbach,et al.  Description Logics for Natural Language Processing , 1994 .

[10]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[11]  Jeroen Groenendijk,et al.  Logic, language and meaning: Vol. II: Intensional logic and logical grammar , 1991 .

[12]  Christopher D. Manning,et al.  An extended model of natural logic , 2009, IWCS.

[13]  P MarcusMitchell,et al.  Building a large annotated corpus of English , 1993 .

[14]  Joachim Niehren,et al.  Constraints over Lambda-Structures in Semantic Underspecification , 1998, COLING-ACL.

[15]  Tran Cao Son,et al.  Using Answer Set Programming and Lambda Calculus to Characterize Natural Language Sentences with Normatives and Exceptions , 2008, AAAI.

[16]  William C. Purdy,et al.  A Logic for Natural Language , 1991, Notre Dame J. Formal Log..

[17]  Ralph Debusmann,et al.  Put My Galakmid Coin into the Dispenser and Kick It: Computational Linguistics and Theorem Proving in a Computer Game , 2004, J. Log. Lang. Inf..

[18]  Andrei Voronkov,et al.  The design and implementation of VAMPIRE , 2002, AI Commun..

[19]  Ido Dagan,et al.  A Compact Forest for Scalable Inference over Entailment and Paraphrase Rules , 2009, EMNLP.

[20]  Dan Flickinger,et al.  Minimal Recursion Semantics: An Introduction , 2005 .

[21]  Johan Bos,et al.  Meaningful conversation with mobile robots , 2007, Adv. Robotics.

[22]  Peter Baumgartner,et al.  Hyper Tableaux with Equality , 2007, CADE.

[23]  Uwe Reyle,et al.  Dealing with Ambiguities by Underspecification: Construction, Representation and Deduction , 1993, J. Semant..

[24]  Johan Bos,et al.  Proceedings of the Ninth International Conference on Computational Semantics (IWCS 2011) , 2011 .

[25]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[26]  Miriam Butt,et al.  The Parallel Grammar Project , 2002, COLING 2002.

[27]  Godehard Link The Logical Analysis of Plurals and Mass Terms: A Lattice‐theoretical Approach , 2008 .

[28]  Bonnie L. Webber,et al.  Towards the Use of Automated Reasoning in Discourse Disambiguation , 2001, J. Log. Lang. Inf..

[29]  Diego Calvanese,et al.  The Description Logic Handbook , 2007 .

[30]  Michael Gelfond,et al.  Answer Sets , 2008, Handbook of Knowledge Representation.

[31]  Peter Clark,et al.  The Seventh PASCAL Recognizing Textual Entailment Challenge , 2011, TAC.

[32]  Geoff Sutcliffe,et al.  The development of CASC , 2002, AI Commun..

[33]  Patrick Pantel,et al.  VerbOcean: Mining the Web for Fine-Grained Semantic Verb Relations , 2004, EMNLP.

[34]  Patrick Pantel,et al.  Espresso: Leveraging Generic Patterns for Automatically Harvesting Semantic Relations , 2006, ACL.

[35]  Katja Hofmann,et al.  Lexical Patterns or Dependency Patterns: Which Is Better for Hypernym Extraction? , 2009, CoNLL.

[36]  Lauri Karttunen,et al.  Local Textual Inference: Can it be Defined or Circumscribed? , 2005, EMSEE@ACL.

[37]  R. Scha Distributive, Collective and Cumulative Quantification , 1984 .

[38]  Jan van Eijck,et al.  Representing Discourse in Context , 1997, Handbook of Logic and Language.

[39]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[40]  Stefan Thater,et al.  Computing Weakest Readings , 2010, ACL.

[41]  Neville Ryant,et al.  A large-scale classification of English verbs , 2008, Lang. Resour. Evaluation.

[42]  David R. Dowty,et al.  Introduction to Montague semantics , 1980 .

[43]  Dekang Lin,et al.  DIRT – Discovery of Inference Rules from Text , 2001 .

[44]  Hwee Tou Ng,et al.  A Machine Learning Approach to Coreference Resolution of Noun Phrases , 2001, CL.

[45]  David Carter,et al.  Book Reviews: Interpreting Anaphors in Natural Language Texts , 1990, CL.

[46]  Ian Pratt-Hartmann,et al.  Fragments of Language , 2004, J. Log. Lang. Inf..

[47]  Dan Flickinger,et al.  An Open Source Grammar Development Environment and Broad-coverage English Grammar Using HPSG , 2000, LREC.

[48]  Stephen Pulman,et al.  Using the Framework , 1996 .

[49]  Daniel Hardt,et al.  An Empirical Approach to VP Ellipsis , 1997, CL.

[50]  Allan Ramsay,et al.  Models and Discourse Models , 2008 .

[51]  Kentaro Inui,et al.  Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing , 2007, ACL 2007.

[52]  Ulrich Furbach,et al.  An application of automated reasoning in natural language question answering , 2010, AI Commun..

[53]  Koen Claessen,et al.  New techniques that improve mace-style model nding , 2003 .

[54]  M. de Rijke,et al.  Light-Weight Entailment Checking for Computational Semantics , 2001 .

[55]  Daniel Gildea,et al.  The Proposition Bank: An Annotated Corpus of Semantic Roles , 2005, CL.

[56]  Robert Givan,et al.  Natural Language Syntax and First-Order Inference , 1992, Artificial Intelligence.

[57]  Günther Görz,et al.  Model Generation for Generalized Quantifiers via Answer Set Programming , 2006 .

[58]  James Richard Curran,et al.  From distributional to semantic similarity , 2004 .

[59]  Claire Gardent,et al.  Interpreting Definites using Model Generation , 2000 .

[60]  C. Fox Computational Semantics , .

[61]  Ido Dagan,et al.  The Third PASCAL Recognizing Textual Entailment Challenge , 2007, ACL-PASCAL@ACL.

[62]  Johan Bos,et al.  Recognising Textual Entailment with Logical Inference , 2005, HLT.

[63]  Gerhard Weikum,et al.  SOFIE: a self-organizing framework for information extraction , 2009, WWW '09.

[64]  Godehard Link Review: L. T. F. Gamut, Logic, Language, and Meaning. Volume I. Introduction to Logic; Grammar., L. T. F. Gamut, Logic, Language, and Meaning. Volume II. Intensional Logic and Logical , 1996 .

[65]  James Pustejovsky,et al.  The Generative Lexicon , 1995, CL.

[66]  David R. Dowty On the Semantic Content of the Notion of ‘Thematic Role’ , 1989 .

[67]  Ekaterina Shutova,et al.  Models of Metaphor in NLP , 2010, ACL.

[68]  Ralph Grishman,et al.  Using NOMLEX to Produce Nominalization Patterns for Information Extraction , 1998, ACL 1998.

[69]  Diego Mollá Aliod,et al.  Recognizing Textual Entailment Via Atomic Propositions , 2005, MLCW.

[70]  Richard Montague,et al.  The Proper Treatment of Quantification in Ordinary English , 1973 .

[71]  Raymond J. Mooney,et al.  Automated Construction of Database Interfaces: Intergrating Statistical and Relational Learning for Semantic Parsing , 2000, EMNLP.

[72]  Renate Bartsch,et al.  The Semantics and Syntax of Number and Numbers , 1973 .

[73]  Johan Bos,et al.  Wide-Coverage Semantic Analysis with Boxer , 2008, STEP.

[74]  Roy Bar-Haim,et al.  The Second PASCAL Recognising Textual Entailment Challenge , 2006 .

[75]  Jochen L. Leidner Toponym resolution in text: annotation, evaluation and applications of spatial grounding , 2007, SIGF.

[76]  Andreas Wotzlaw,et al.  Towards Better Ontological Support for Recognizing Textual Entailment , 2010, EKAW.

[77]  Marti A. Hearst Automatic Acquisition of Hyponyms from Large Text Corpora , 1992, COLING.

[78]  James F. Allen,et al.  Deep Semantic Analysis of Text , 2008, STEP.

[79]  P. Matthews The Concise Oxford Dictionary of Linguistics , 1998 .

[80]  Ian Pratt-Hartmann,et al.  A Two-Variable Fragment of English , 2002, J. Log. Lang. Inf..

[81]  Josef van Genabith,et al.  Glue, Underspecification and Translation , 2001 .

[82]  Douglas B. Lenat,et al.  CYC: a large-scale investment in knowledge infrastructure , 1995, CACM.

[83]  Johan Bos The "La Sapienza" Question Answering System at TREC 2006 , 2006, TREC.

[84]  Michael Kohlhase,et al.  Inference and Computational Semantics , 2004, J. Log. Lang. Inf..

[85]  Christoph Weidenbach System Description: Spass Version 1.0.0 , 1999, CADE.

[86]  Yaroslav Fyodorov,et al.  A Natural Logic Inference System , 2000 .

[87]  James H. Martin,et al.  Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition , 2000 .

[88]  Yuliya Lierler,et al.  Knowledge Representation and Question Answering , 2008, Handbook of Knowledge Representation.

[89]  I. I. N. Kamp Combining Montague Semantics and Discourse Representation , 1996 .

[90]  William McCune Automatic Proofs and Counterexamples for Some Ortholattice Identities , 1998, Inf. Process. Lett..

[91]  Philipp Cimiano,et al.  Building Models for Bridges , 2003 .

[92]  Terence Parsons,et al.  Events in the Semantics of English: A Study in Subatomic Semantics , 1990 .

[93]  Johan Bos,et al.  Let's not Argue about Semantics , 2008, LREC.

[94]  Richard Crouch,et al.  Glue semantics for HPSG , 2002, Proceedings of the International Conference on Head-Driven Phrase Structure Grammar.

[95]  Victor Sanchez,et al.  Studies on Natural Logic and Categorial Grammar , 1991 .

[96]  Daniel Jurafsky,et al.  Semantic Taxonomy Induction from Heterogenous Evidence , 2006, ACL.

[97]  Johan Bos Towards Wide-Coverage Semantic Interpretation , 2005 .

[98]  Livio Robaldo,et al.  Dependency Tree Semantics , 2006, ISMIS.

[99]  Johan Bos,et al.  Computational semantics : The interdisciplinary field of Logic, Language and Information , 2003 .

[100]  G. Lakoff Linguistics and natural logic , 1970, Synthese.

[101]  Ways of Branching Quantifiers , 2022 .

[102]  Udo Kruschwitz,et al.  Addressing the Resource Bottleneck to Create Large-Scale Annotated Texts , 2008, STEP.

[103]  Nicholas Asher,et al.  Reference to abstract objects in discourse , 1993, Studies in linguistics and philosophy.

[104]  William R. Keller,et al.  Nested Cooper Storage: The Proper Treatment of Quantification in Ordinary Noun Phrases , 1988 .

[105]  Nicholas Asher,et al.  Generics and Defaults , 1997, Handbook of Logic and Language.

[106]  Robin Cooper,et al.  Quantification and Syntactic Theory , 1983 .

[107]  Victor Manual Sánchez Valencia,et al.  Studies on natural logic and categorial grammar , 1991 .

[108]  Jerry R. Hobbs,et al.  Interpretation as Abduction , 1993, Artif. Intell..

[109]  Felix Naumann,et al.  Data fusion , 2009, CSUR.

[110]  Francis Jeffry Pelletier,et al.  Representation and Inference for Natural Language: A First Course in Computational Semantics , 2005, Computational Linguistics.

[111]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[112]  Johan Bos,et al.  Implementing the Binding and Accommodation Theory for Anaphora Resolution and Presupposition Projection , 2003, CL.

[113]  Kurt Mehlhorn,et al.  A Polynomial-Time Fragment of Dominance Constraints , 2000, ACL.

[114]  Jun'ichi Tsujii,et al.  Translating HPSG-Style Outputs of a Robust Parser into Typed Dynamic Logic , 2006, ACL.

[115]  Philipp Cimiano,et al.  Ontology learning and population from text - algorithms, evaluation and applications , 2006 .

[116]  Johan Bos,et al.  Linguistically Motivated Large-Scale NLP with C&C and Boxer , 2007, ACL.

[117]  Geoff Sutcliffe,et al.  The state of CASC , 2006, AI Commun..

[118]  William McCune,et al.  Automated Deduction in Equational Logic and Cubic Curves , 1996, Lecture Notes in Computer Science.

[119]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[120]  Enrico Franconi,et al.  A treatment of plurals and plural quantifications based on a theory of collections , 1993, Minds and Machines.

[121]  Malvina Nissim,et al.  Data and models for metonymy resolution , 2009, Lang. Resour. Evaluation.

[122]  Rui P. Chaves,et al.  Dynamic Model checking for Discourse Representation Structures with pluralities , 2007 .

[123]  John B. Lowe,et al.  The Berkeley FrameNet Project , 1998, ACL.

[124]  Andrei Voronkov,et al.  Automated Reasoning: Past Story and New Trends , 2003, IJCAI.

[125]  Im Stadtwald,et al.  First-Order Inference and the Interpretation of Questions and Answers , 2000 .

[126]  Dan I. Moldovan,et al.  Automatic Discovery of Part-Whole Relations , 2006, CL.

[127]  J. Barwise,et al.  Generalized quantifiers and natural language , 1981 .

[128]  H. Niemann,et al.  An Inference-Based Approach to the Interpretation of Discourse , 2000 .

[129]  G. Sher Ways of branching quantifers , 1990 .

[130]  Erik F. Tjong Kim Sang,et al.  Extracting Hypernym Pairs from the Web , 2007, ACL.

[131]  Roberto Navigli,et al.  Word sense disambiguation: A survey , 2009, CSUR.

[132]  Johan Bos Introduction to the Shared Task on Comparing Semantic Representations , 2008, STEP.

[133]  James Pustejovsky,et al.  Merging PropBank, NomBank, TimeBank, Penn Discourse Treebank and Coreference , 2005, FCA@ACL.

[134]  Jaakko Hintikka,et al.  Quantifiers vs. Quantification Theory , 1973 .

[135]  John F. Sowa,et al.  Knowledge Representation and Reasoning , 2000 .

[136]  Stuart M. Shieber,et al.  Ellipsis and higher-order unification , 1991 .

[137]  Sanda M. Harabagiu,et al.  Cogex: A semantically and contextually enriched logic prover for question answering , 2007, J. Appl. Log..