Localizing Retinotopic fMRI Activation in Human Primary Visual Cortex via Dynamic Programming

This paper presents an approach for automatically delineating the borders of human primary visual cortex and finding ridges of maximal response due to static phase-encoding stimuli on fMRI t-statistical maps via dynamic programming. The sensitivity of such an approach to the choice of initial starting and ending points and the identification of the ridge path over a wide response region are addressed. Moreover, retinotopic maps for left and right visual cortex are shown in a population of two normal subjects

[1]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[2]  G. Holmes DISTURBANCES OF VISION BY CEREBRAL LESIONS , 1918, The British journal of ophthalmology.

[3]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[4]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[5]  Alok Gupta,et al.  Dynamic Programming for Detecting, Tracking, and Matching Deformable Contours , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Michael I. Miller,et al.  Brain Segmentation and the Generation of Cortical Surfaces , 1999, NeuroImage.

[7]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[8]  Michael I. Miller,et al.  Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator , 2006, IEEE Transactions on Medical Imaging.

[9]  Taosheng Liu,et al.  Retinotopic mapping of the visual cortex using functional magnetic resonance imaging in a patient with central scotomas from atrophic macular degeneration. , 2004, Ophthalmology.

[10]  David A. Rottenberg,et al.  Quasi-Conformally Flat Mapping the Human Cerebellum , 1999, MICCAI.

[11]  Michael I. Miller,et al.  Bayesian Construction of Geometrically Based Cortical Thickness Metrics , 2000, NeuroImage.

[12]  Michael I. Miller,et al.  Dynamic Programming Generation of Curves on Brain Surfaces , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[14]  Michael I. Miller,et al.  Dynamic programming generation of boundaries of local coordinatized submanifolds in the neocortex: application to the planum temporale , 2003, NeuroImage.

[15]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[16]  J. Horton,et al.  The representation of the visual field in human striate cortex. A revision of the classic Holmes map. , 1991, Archives of ophthalmology.

[17]  B. Wandell,et al.  Abnormal retinotopic representations in human visual cortex revealed by fMRI. , 2001, Acta psychologica.

[18]  Jerry L. Prince,et al.  Topology correction in brain cortex segmentation using a multiscale, graph-based algorithm , 2002, IEEE Transactions on Medical Imaging.

[19]  N. Kanwisher,et al.  Reorganization of Visual Processing in Macular Degeneration , 2005, The Journal of Neuroscience.

[20]  B. Wandell,et al.  Topographic Organization of Human Visual Areas in the Absence of Input from Primary Cortex , 1999, The Journal of Neuroscience.

[21]  Xiao Han,et al.  Cortical surface reconstruction using a topology preserving geometric deformable model , 2001, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001).

[22]  Robert O. Duncan,et al.  Cortical Magnification within Human Primary Visual Cortex Correlates with Acuity Thresholds , 2003, Neuron.