Experimental Approach for Finding the Response Time of MR Dampers for Vehicle Applications
暂无分享,去创建一个
This paper offers a method and an experimental example of determining the response time of Magneto-Rheological (MR) dampers. The response time of MR dampers for automotive suspension applications is valuable information because it is one of the key factors that determine the practical effectiveness of the use of MR dampers in vehicles. However, a detailed description of the response time of MR dampers is seldom given in the literature. Furthermore, the methods of computing the response time are not discussed in detail. Therefore, this study intends to develop a method for experimental determination of the response time of MR dampers for automotive suspensions. A triangle wave that maintains a constant velocity across the damper is proposed as the input to use in experiments. This triangle wave ensures a constant velocity across the damper in order to accurately evaluate the response time of the MR damper. The response time was defined as the time required to make the transition from the initial state to 63.2% of the final state, or one time constant. The time constant is a measure of how long it takes a system to respond to a given input. In other words, the response time is the time necessary for the damper to achieve the desired force upon activation. To demonstrate the method, the response time was found for an MR damper particularly designed and fabricated for vehicle applications. Two cases were considered: activation response time of the damper and deactivation response time of the damper. Both cases were studied during the rebound stroke of the damper. It was found that the response time of the MR damper under activation and deactivation was 15.4 ms and 13.9 ms respectively. The results are comparable to those found in the literature.Copyright © 2003 by ASME