Publisher Correction: Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators

[1]  K. Vahala,et al.  Towards milli-Hertz laser frequency noise on a chip , 2020, Conference on Lasers and Electro-Optics.

[2]  N. J. Engelsen,et al.  High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits , 2020, Nature Communications.

[3]  P. Rakich,et al.  422 Million Q Planar Integrated All-Waveguide Resonator with a 3.4 Billion Absorption Limited Q and Sub-MHz Linewidth , 2020, 2009.07428.

[4]  C. Roeloffzen,et al.  Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth. , 2020, Optics express.

[5]  Roberto Morandotti,et al.  Ultra-dense optical data transmission over standard fibre with a single chip source , 2020, Nature Communications.

[6]  J. Bowers,et al.  Laser Self-Injection Locked Frequency Combs in a Normal GVD Integrated Microresonator , 2020, 2020 Conference on Lasers and Electro-Optics (CLEO).

[7]  Erwan Lucas,et al.  Photonic microwave generation in the X- and K-band using integrated soliton microcombs , 2020, Nature Photonics.

[8]  A. Voloshin,et al.  Numerical modelling of WGM microresonator Kerr frequency combs in self-injection locking regime , 2020 .

[9]  Kerry J. Vahala,et al.  Earth rotation measured by a chip-scale ring laser gyroscope , 2020, Nature Photonics.

[10]  N. Kondratiev,et al.  Modulational instability and frequency combs in whispering-gallery-mode microresonators with backscattering , 2019, 1912.11297.

[11]  John E. Bowers,et al.  Integrated turnkey soliton microcombs , 2019, Nature.

[12]  John E. Bowers,et al.  Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration , 2019, Optica.

[13]  J. Bowers,et al.  Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration , 2019, APL Photonics.

[14]  C. Roeloffzen,et al.  Ultra-narrow linewidth hybrid integrated semiconductor laser , 2019, 1910.08141.

[15]  P. Andrekson,et al.  High-Q Si3N4 microresonators based on a subtractive processing for Kerr nonlinear optics. , 2019, Optics express.

[16]  Daniel J. Blumenthal,et al.  Silicon Nitride Ring Resonators with 0.123 dB/m Loss and Q-Factors of 216 Million for Nonlinear Optical Applications , 2019, 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[17]  T. C. Briles,et al.  Architecture for the photonic integration of an optical atomic clock , 2019, Optica.

[18]  N. J. Engelsen,et al.  Thermo-Refractive Noise in Silicon Nitride Microresonators , 2019, 2019 Conference on Lasers and Electro-Optics (CLEO).

[19]  M. Gorodetsky,et al.  Electrically pumped photonic integrated soliton microcomb , 2018, Nature Communications.

[20]  Anatoliy A. Savchenkov,et al.  On Stiffness of Optical Self-Injection Locking , 2018, Photonics.

[21]  M. Lipson,et al.  Battery-operated integrated frequency comb generator , 2018, Nature.

[22]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2018, Nature.

[23]  Wei Li,et al.  Toward Monolithic Integration of OEOs: From Systems to Chips , 2018, Journal of Lightwave Technology.

[24]  Grant M. Brodnik,et al.  Sub-hertz fundamental linewidth photonic integrated Brillouin laser , 2018, Nature Photonics.

[25]  Xi Chen,et al.  Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection. , 2018, Optics express.

[26]  P. Andrekson,et al.  High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators , 2018, Nature Communications.

[27]  C. Koos,et al.  Ultrafast optical ranging using microresonator soliton frequency combs , 2017, Science.

[28]  M. Gorodetsky,et al.  Thermorefractive noise in whispering gallery mode microresonators: Analytical results and numerical simulation , 2017, Physics Letters A.

[29]  K. Vahala,et al.  Soliton microcomb range measurement , 2017, Science.

[30]  Heming Wang,et al.  Bridging ultrahigh-Q devices and photonic circuits , 2017, Nature Photonics.

[31]  M. Gorodetsky,et al.  Dissipative Kerr solitons in optical microresonators , 2015, Science.

[32]  Marko Loncar,et al.  Monolithic ultra-high-Q lithium niobate microring resonator , 2017, 1712.04479.

[33]  Michael L. Gorodetsky,et al.  Self-injection locking of a laser diode to a high-Q WGM microresonator , 2017 .

[34]  Michal Lipson,et al.  Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold , 2017 .

[35]  A. Matsko,et al.  Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization , 2017, Nature Communications.

[36]  Miles H. Anderson,et al.  Microresonator-based solitons for massively parallel coherent optical communications , 2016, Nature.

[37]  Kerry J. Vahala,et al.  Microresonator soliton dual-comb spectroscopy , 2016, Science.

[38]  Kazuro Kikuchi,et al.  Fundamentals of Coherent Optical Fiber Communications , 2016, Journal of Lightwave Technology.

[39]  Alan Y. Liu,et al.  Heterogeneous Silicon Photonic Integrated Circuits , 2016, Journal of Lightwave Technology.

[40]  John E. Bowers,et al.  Integrated microwave photonics , 2015, 2015 International Topical Meeting on Microwave Photonics (MWP).

[41]  Jian Wang,et al.  Mode-locked dark pulse Kerr combs in normal-dispersion microresonators , 2015, Nature Photonics.

[42]  A. A. Savchenkov,et al.  High spectral purity Kerr frequency comb radio frequency photonic oscillator , 2015, Nature Communications.

[43]  A. Matsko,et al.  Ultralow noise miniature external cavity semiconductor laser , 2015, Nature Communications.

[44]  A. Bhardwaj,et al.  Narrow linewidth sampled-grating distributed Bragg reflector laser with enhanced side-mode suppression , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[45]  M. Gorodetsky,et al.  Frequency combs and platicons in optical microresonators with normal GVD. , 2015, Optics express.

[46]  John E. Bowers,et al.  Integrated waveguide coupled Si_3N_4 resonators in the ultrahigh-Q regime , 2014 .

[47]  Lute Maleki,et al.  Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD. , 2014, Optics letters.

[48]  Yanne K. Chembo,et al.  Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes , 2013, 1308.2542.

[49]  M. Qi,et al.  Drop-port study of microresonator frequency combs: power transfer, spectra and time-domain characterization. , 2013, Optics express.

[50]  Kerry J. Vahala,et al.  Spiral resonators for on-chip laser frequency stabilization , 2013, Nature Communications.

[51]  Ali Adibi,et al.  Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform. , 2013, Optics express.

[52]  K. Vahala,et al.  Microwave synthesizer using an on-chip Brillouin oscillator , 2013, Nature Communications.

[53]  M. J. Shaw,et al.  Ultralow-loss silicon ring resonators , 2012, The 9th International Conference on Group IV Photonics (GFP).

[54]  Kerry J. Vahala,et al.  Chemically etched ultrahigh-Q wedge-resonator on a silicon chip , 2012, Nature Photonics.

[55]  D. Ostrowsky,et al.  On the genesis and evolution of Integrated Quantum Optics , 2011, 1108.3162.

[56]  A. Leinse,et al.  Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. , 2011, Optics express.

[57]  M. Wilde,et al.  Optical Atomic Clocks , 2019, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC).

[58]  K. Vahala Optical microcavities , 2003, Nature.

[59]  K. Vahala,et al.  Modal coupling in traveling-wave resonators. , 2002, Optics letters.

[60]  V. Mizrahi,et al.  Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator , 1994 .

[61]  A. Hemmerich,et al.  Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy , 1990 .

[62]  N. Abraham,et al.  Analysis of the noise spectra of a laser diode with optical feedback from a high-finesse resonator , 1989 .

[63]  R. G. Beausoleil,et al.  Semiconductor Laser Stabilization By External Optical Feedback , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[64]  Leo W. Hollberg,et al.  Modulatable narrow‐linewidth semiconductor lasers , 1988 .

[65]  L. Hollberg,et al.  Frequency stabilization of semiconductor lasers by resonant optical feedback. , 1987, Optics letters.

[66]  R. Lefever,et al.  Spatial dissipative structures in passive optical systems. , 1987, Physical review letters.

[67]  R. Adler A Study of Locking Phenomena in Oscillators , 1946, Proceedings of the IRE.