Specialized CFD Grid Generation Methods for Near-Field Sonic Boom Prediction

Ongoing interest in analysis and design of low sonic boom supersonic transports re- quires accurate and ecient Computational Fluid Dynamics (CFD) tools. Specialized grid generation techniques are employed to predict near- eld acoustic signatures of these con- gurations. A fundamental examination of grid properties is performed including grid alignment with ow characteristics and element type. The issues a ecting the robustness of cylindrical surface extrusion are illustrated. This study will compare three methods in the extrusion family of grid generation methods that produce grids aligned with the freestream Mach angle. These methods are applied to con gurations from the First AIAA Sonic Boom Prediction Workshop.

[1]  David H. Graham,et al.  Computational Fluid Dynamics Comparison and Flight Test Measurement of F-5E Off-Body Pressures , 2005 .

[2]  Kelly R. Laflin,et al.  A Hybrid Computational Fluid Dynamics Procedure for Sonic Boom Prediction , 2006 .

[3]  Gediminas Adomavicius,et al.  A Parallel Multilevel Method for Adaptively Refined Cartesian Grids with Embedded Boundaries , 2000 .

[4]  Kimio Sakata,et al.  Japan's Supersonic Technology and Business Jet Perspectives , 2013 .

[5]  Kenrick Waithe,et al.  Application of USM3D for Sonic Boom Prediction by Utilizing a Hybrid Procedure , 2008 .

[6]  Osama A. Kandil,et al.  Fun3D / OptiGRID Coupling for Unstructured Grid Adaptation for Sonic Boom Problems , 2008 .

[7]  Takeshi Ito,et al.  Sonic Boom Prediction Using Multi-Block Structured Grids CFD Code Considering Jet-On Effects , 2009 .

[8]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .

[9]  John Morgenstern,et al.  Full Configuration Low Boom Model and Grids for 2014 Sonic Boom Prediction Workshop , 2013 .

[10]  Wu Li,et al.  Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft ∗ , 2009 .

[11]  Edward N. Tinoco,et al.  Grid Quality and Resolution Issues from the Drag Prediction Workshop Series , 2008 .

[12]  Neal T. Frink,et al.  Three-dimensional upward scheme for solving the Euler equations on unstructured tetrahedral grids , 1991 .

[13]  Karen A. Deere,et al.  Efficient Unstructured Grid Adaptation Methods for Sonic Boom Prediction , 2008 .

[14]  Boris Diskin,et al.  Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations: Inviscid Fluxes , 2011 .

[15]  Michael A. Park,et al.  Summary and Statistical Analysis of the First AIAA Sonic Boom Prediction Workshop , 2016 .

[16]  Ilan Kroo,et al.  Advanced Algorithms for Design and Optimization of Quiet Supersonic Platforms , 2002 .

[17]  Karen A. Deere,et al.  A Grid Sourcing and Adaptation Study Using Unstructured Grids for Supersonic Boom Prediction , 2008 .

[18]  Jr. Alfred Bedard The measurement of sonic boom waveforms and propagation characteristics - Techniques and challenges , 1990 .

[19]  C. M. Darden,et al.  Euler code prediction of near-field to midfield sonic boom pressure signatures , 1993 .

[20]  Michael Buonanno,et al.  Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018-2020 Period Phase 2 , 2015 .

[21]  Scott D. Thomas,et al.  Euler/experiment correlations of sonic boom pressure signatures , 1991 .

[22]  Richard L. Campbell,et al.  Evaluation of Grid Modification Methods for On- and Off-Track Sonic Boom Analysis , 2013 .

[23]  Kenrick A. Waithe Introduction of First Low Boom Prediction Workshop , 2013 .

[24]  Neal T. Frink,et al.  Upwind Scheme for Solving the Euler Equations on Unstructured Tetrahedral Meshes , 1992 .

[25]  Donald Howe Hybrid CART3D/OVERFLOW Near-Field Analysis of a Low Boom Configuration with Wind Tunnel Comparisons (Invited) , 2011 .

[26]  W. K. Anderson,et al.  An implicit upwind algorithm for computing turbulent flows on unstructured grids , 1994 .

[27]  Richard L. Campbell,et al.  Evaluation of Refined Tetrahedral Meshes with Projected, Stretched, and Sheared Prism Layers for Sonic Boom Analysis (Invited) , 2011 .

[28]  David L. Darmofal,et al.  Shock Capturing with Higher-Order, PDE-Based Artificial Viscosity , 2007 .

[29]  Preston A. Henne,et al.  Case for Small Supersonic Civil Aircraft , 2005 .

[30]  Kamran Fouladi Unstructured grids for sonic-boom analysis , 1993 .

[31]  Wagdi G. Habashi,et al.  Anisotropic 3-D mesh adaptation on unstructured hybrid meshes , 2002 .

[32]  John M. Morgenstern,et al.  How to Accurately Measure Low Sonic Boom or Model Surface Pressures in Supersonic Wind Tunnels , 2012 .

[33]  Michael Andrew Park,et al.  Anisotropic output-based adaptation with tetrahedral cut cells for compressible flows , 2008 .

[34]  Zhi Yang,et al.  Prediction of Sonic Boom Signature Using Euler-Full Potential CFD with Grid Adaptation and Shock Fitting , 2002 .

[35]  Kenneth J Plotkin,et al.  State of the art of sonic boom modeling. , 1998, The Journal of the Acoustical Society of America.

[36]  Frédéric Alauzet,et al.  Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations , 2010, J. Comput. Phys..

[37]  Marie-Gabrielle Vallet,et al.  How to Subdivide Pyramids, Prisms, and Hexahedra into Tetrahedra , 1999, IMR.

[38]  Dimitri J. Mavriplis,et al.  Viscous Flow Analysis Using a Parallel Unstructured Multigrid Solver , 2000 .

[39]  S. Pirzadeh Structured background grids for generation of unstructured grids by advancing front method , 1991 .

[40]  Richard L. Campbell,et al.  USM3D Analysis of Low Boom Configuration , 2011 .

[41]  M. Aftosmis,et al.  Design and Evaluation of a Pressure Rail for Sonic Boom Measurement in Wind Tunnels , 2012 .

[42]  Robert H. Nichols,et al.  Solver and Turbulence Model Upgrades to OVERFLOW 2 for Unsteady and High-Speed Applications , 2006 .

[43]  E. Nielsen,et al.  Aerodynamic design sensitivities on an unstructured mesh using the Navier-Stokes equations and a discrete adjoint formulation , 1998 .

[44]  Michael Park,et al.  Low Boom Configuration Analysis with FUN3D Adjoint Simulation Framework (Invited) , 2011 .

[45]  Shayan Moini-Yekta,et al.  Computational and Experimental Assessment of Models for the First AIAA Sonic Boom Prediction Workshop , 2014 .

[46]  Scott D. Thomas,et al.  Euler/experiment correlations of sonic boom pressure signatures , 1991 .

[47]  Seongim Choi,et al.  Numerical and Mesh Resolution Requirements for Accurate Sonic Boom Prediction , 2009 .

[48]  Mathias Wintzer,et al.  Adjoint-Based Adaptive Mesh Refinement for Complex Geometries , 2008 .

[49]  L Krist Sherrie,et al.  CFL3D User''s Manual (Version 5.0) , 1998 .

[50]  Frédéric Alauzet,et al.  High-order sonic boom modeling based on adaptive methods , 2010, J. Comput. Phys..

[51]  William Jones GridEx - An Integrated Grid Generation Package for CFD , 2003 .

[52]  Shahyar Pirzadeh,et al.  Structured background grids for generation of unstructured grids by advancing front method , 1991 .

[53]  J. Peiro,et al.  Adaptive remeshing for three-dimensional compressible flow computations , 1992 .

[54]  Todd Magee,et al.  System-Level Experimental Validations for Supersonic Commercial Transport Aircraft Entering Service in the 2018-2020 Time Period , 2015 .

[55]  Garrett. Barter,et al.  Shock Capturing with PDE-Based Artificial Viscosity for an Adaptive, Higher-Order Discontinuous Galerkin Finite Element Method , 2008 .

[56]  Scott D. Thomas,et al.  Numerical Predictions of Sonic Boom Signatures for a Straight Line Segmented Leading Edge Model , 2012 .

[57]  Juliet Page,et al.  An efficient method for incorporating computational fluid dynamics into sonic boom prediction , 1991 .

[58]  David L. Darmofal,et al.  Output-based Adaptive Meshing Using Triangular Cut Cells , 2006 .

[59]  Boris Diskin,et al.  Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations: Inviscid Fluxes , 2011 .

[60]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[61]  Michael J. Aftosmis,et al.  Adjoint-Based Low-Boom Design with Cart3D , 2011 .

[62]  Isik Ozcer,et al.  Sonic Boom Computations for Double -Cone Configuration Using CFL3D , FUN3D and Full -Potential Code s , 2006 .

[63]  Eric J. Nielsen,et al.  Validation of 3D Adjoint Based Error Estimation and Mesh Adaptation for Sonic Boom Prediction , 2006 .

[64]  Isik Ali Ozcer,et al.  Sonic Boom Prediction Using Euler / Full Potential Methodology , 2007 .

[65]  Richard L. Campbell,et al.  Summary of the 2008 NASA Fundamental Aeronautics Program Sonic Boom Prediction Workshop , 2014 .

[66]  Trong T. Bui,et al.  Computational Fluid Dynamics Analysis of Nozzle Plume Effects on Sonic Boom Signature , 2011 .

[67]  M. Jahed Djomehri,et al.  An assessment of the adaptive unstructured tetrahedral grid, Euler Flow Solver Code FELISA , 1994 .

[68]  G. D. van Albada,et al.  A comparative study of computational methods in cosmic gas dynamics , 1982 .