A semi-parametric method for transforming data to normality
暂无分享,去创建一个
[1] Ralph B. D'Agostino,et al. Goodness-of-Fit-Techniques , 2020 .
[2] A. V. D. Vaart,et al. Asymptotic Statistics: Frontmatter , 1998 .
[3] M. Wand,et al. CORRECTING FOR KURTOSIS IN DENSITY ESTIMATION , 1992 .
[4] P. Hall,et al. Bandwidth selection for the smoothing of distribution functions , 1998 .
[5] Russell C. H. Cheng,et al. Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin , 1983 .
[6] Bryan F. J. Manly,et al. Exponential Data Transformations , 1976 .
[7] David Ruppert,et al. Bias reduction in kernel density estimation by smoothed empirical transformations , 1994 .
[8] James Stephen Marron,et al. Iterated Transformation–Kernel Density Estimation , 1999 .
[9] A. Leslie Robb,et al. Alternative Transformations to Handle Extreme Values of the Dependent Variable , 1988 .
[10] Alan M. Polansky,et al. Multistage plug—in bandwidth selection for kernel distribution function estimates , 2000 .
[11] Uniform in Bandwidth Consistency of Local Polynomial Regression Function Estimators , 2006, math/0601548.
[12] N. Draper,et al. An Alternative Family of Transformations , 1980 .
[13] Root-n convergent transformation-kernel density estimation , 2000 .
[14] J. Tukey. On the Comparative Anatomy of Transformations , 1957 .
[15] Uwe Einmahl,et al. Uniform in bandwidth consistency of kernel-type function estimators , 2005 .
[16] S. Shapiro,et al. An Analysis of Variance Test for Normality (Complete Samples) , 1965 .
[17] D. M. Titterington,et al. Comment on “Estimating Parameters in Continuous Univariate Distributions” , 1985 .
[18] M. C. Jones. The performance of kernel density functions in kernel distribution function estimation , 1990 .
[19] Marie A. Gaudard,et al. On estimating the box-cox transformation to normality , 2000 .
[20] D. Cox,et al. An Analysis of Transformations , 1964 .
[21] P. Sarda. Smoothing parameter selection for smooth distribution functions , 1993 .
[22] N. L. Johnson,et al. Systems of frequency curves generated by methods of translation. , 1949, Biometrika.
[23] D. Boos. Rates of convergence for the distance between distribution function estimators , 1986 .
[24] A. Azzalini. A note on the estimation of a distribution function and quantiles by a kernel method , 1981 .
[25] M. Wand,et al. EXACT MEAN INTEGRATED SQUARED ERROR , 1992 .
[26] A. Atkinson,et al. Grouped Likelihood for the Shifted Power Transformation , 1991 .
[27] Naomi S. Altman,et al. Bandwidth selection for kernel distribution function estimation , 1995 .
[28] J. Swanepoel. Mean intergrated squared error properties and optimal kernels when estimating a diatribution function , 1988 .
[29] R. Sakia. The Box-Cox transformation technique: a review , 1992 .
[30] Richard A. Johnson,et al. A new family of power transformations to improve normality or symmetry , 2000 .
[31] A. V. D. Vaart,et al. Asymptotic Statistics: U -Statistics , 1998 .
[32] P. Bickel,et al. An Analysis of Transformations Revisited , 1981 .
[33] S. Weisberg. Plots, transformations, and regression , 1985 .