A semi-parametric method for transforming data to normality

A non-parametric transformation function is introduced to transform data to any continuous distribution. When transformation of data to normality is desired, the use of a suitable parametric pre-transformation function improves the performance of the proposed non-parametric transformation function. The resulting semi-parametric transformation function is shown empirically, via a Monte Carlo study, to perform at least as well as any parametric transformation currently available in the literature.

[1]  Ralph B. D'Agostino,et al.  Goodness-of-Fit-Techniques , 2020 .

[2]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[3]  M. Wand,et al.  CORRECTING FOR KURTOSIS IN DENSITY ESTIMATION , 1992 .

[4]  P. Hall,et al.  Bandwidth selection for the smoothing of distribution functions , 1998 .

[5]  Russell C. H. Cheng,et al.  Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin , 1983 .

[6]  Bryan F. J. Manly,et al.  Exponential Data Transformations , 1976 .

[7]  David Ruppert,et al.  Bias reduction in kernel density estimation by smoothed empirical transformations , 1994 .

[8]  James Stephen Marron,et al.  Iterated Transformation–Kernel Density Estimation , 1999 .

[9]  A. Leslie Robb,et al.  Alternative Transformations to Handle Extreme Values of the Dependent Variable , 1988 .

[10]  Alan M. Polansky,et al.  Multistage plug—in bandwidth selection for kernel distribution function estimates , 2000 .

[11]  Uniform in Bandwidth Consistency of Local Polynomial Regression Function Estimators , 2006, math/0601548.

[12]  N. Draper,et al.  An Alternative Family of Transformations , 1980 .

[13]  Root-n convergent transformation-kernel density estimation , 2000 .

[14]  J. Tukey On the Comparative Anatomy of Transformations , 1957 .

[15]  Uwe Einmahl,et al.  Uniform in bandwidth consistency of kernel-type function estimators , 2005 .

[16]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[17]  D. M. Titterington,et al.  Comment on “Estimating Parameters in Continuous Univariate Distributions” , 1985 .

[18]  M. C. Jones The performance of kernel density functions in kernel distribution function estimation , 1990 .

[19]  Marie A. Gaudard,et al.  On estimating the box-cox transformation to normality , 2000 .

[20]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[21]  P. Sarda Smoothing parameter selection for smooth distribution functions , 1993 .

[22]  N. L. Johnson,et al.  Systems of frequency curves generated by methods of translation. , 1949, Biometrika.

[23]  D. Boos Rates of convergence for the distance between distribution function estimators , 1986 .

[24]  A. Azzalini A note on the estimation of a distribution function and quantiles by a kernel method , 1981 .

[25]  M. Wand,et al.  EXACT MEAN INTEGRATED SQUARED ERROR , 1992 .

[26]  A. Atkinson,et al.  Grouped Likelihood for the Shifted Power Transformation , 1991 .

[27]  Naomi S. Altman,et al.  Bandwidth selection for kernel distribution function estimation , 1995 .

[28]  J. Swanepoel Mean intergrated squared error properties and optimal kernels when estimating a diatribution function , 1988 .

[29]  R. Sakia The Box-Cox transformation technique: a review , 1992 .

[30]  Richard A. Johnson,et al.  A new family of power transformations to improve normality or symmetry , 2000 .

[31]  A. V. D. Vaart,et al.  Asymptotic Statistics: U -Statistics , 1998 .

[32]  P. Bickel,et al.  An Analysis of Transformations Revisited , 1981 .

[33]  S. Weisberg Plots, transformations, and regression , 1985 .