Marginal regression modeling of correlated multicategorical response: A likelihood approach

A full likelihood approach for marginal regression modeling of correlated multicategorical data is proposed. It is in fact an extension of the approach of Fitzmaurice and Laird (1993) for repeated binary response. The association is directly modeled in terms of conditional odds ratio parameters resulting in the fact that the maximum likelihood estimates of mean and association parameters are asymptotically independent. The technical details are worked out and the approach is illustrated with data previously analyzed by Miller, Davis and Landis (1993).

[1]  A. Agresti,et al.  Simultaneously Modeling Joint and Marginal Distributions of Multivariate Categorical Responses , 1994 .

[2]  N M Laird,et al.  Analysing incomplete longitudinal binary responses: a likelihood-based approach. , 1994, Biometrics.

[3]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[4]  J. Dale Global cross-ratio models for bivariate, discrete, ordered responses. , 1986, Biometrics.

[5]  N. Laird,et al.  A likelihood-based method for analysing longitudinal binary responses , 1993 .

[6]  Lue Ping Zhao,et al.  Multivariate Mean Parameter Estimation by Using a Partly Exponential Model , 1992 .

[7]  Joseph B. Lang,et al.  Marginal Modelling of Categorical Data from Crossover Experiments , 1995 .

[8]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[9]  Andrea Rotnitzky,et al.  Regression Models for Discrete Longitudinal Responses , 1993 .

[10]  S. Lipsitz,et al.  Generalized estimating equations for correlated binary data: Using the odds ratio as a measure of association , 1991 .

[11]  H. Origasa Longitudinal Data Analysis Using Linear Models , 1988 .

[12]  G. Molenberghs,et al.  Marginal Modeling of Correlated Ordinal Data Using a Multivariate Plackett Distribution , 1994 .

[13]  Alan Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[14]  R. Prentice,et al.  Correlated binary regression with covariates specific to each binary observation. , 1988, Biometrics.

[15]  J. R. Landis,et al.  The analysis of longitudinal polytomous data: generalized estimating equations and connections with weighted least squares. , 1993, Biometrics.

[16]  David R. Cox,et al.  On the stability of maximum‐likelihood estimators of orthogonal parameters , 1989 .