Scheduling to minimize power consumption using submodular functions

We develop logarithmic approximation algorithms for extremely general formulations of multiprocessor multi-interval offline task scheduling to minimize power usage. Here each processor has an arbitrary specified power consumption to be turned on for each possible time interval, and each job has a specified list of time interval/processor pairs during which it could be scheduled. (A processor need not be in use for an entire interval it is turned on.) If there is a feasible schedule, our algorithm finds a feasible schedule with total power usage within an O(log n) factor of optimal, where n is the number of jobs.(Even in a simple setting with one processor, the problem is Set-Cover hard.) If not all jobs can be scheduled and each job has a specified value, then our algorithm finds a schedule of value at least (1-ε) Z and power usage within an O(log(1/ε)) factor of the optimal schedule of value at least Z, for any specified Z and ε > 0. At the foundation of our work is a general framework for logarithmic approximation to maximizing any submodular function subject to budget constraints.

[1]  Robert J. Vanderbei The Optimal Choice of a Subset of a Population , 1980, Math. Oper. Res..

[2]  Robert D. Kleinberg A multiple-choice secretary algorithm with applications to online auctions , 2005, SODA '05.

[3]  U. Feige,et al.  Maximizing Non-monotone Submodular Functions , 2011 .

[4]  Ran Raz,et al.  A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP , 1997, STOC '97.

[5]  Mohammad Taghi Hajiaghayi,et al.  Automated Online Mechanism Design and Prophet Inequalities , 2007, AAAI.

[6]  Vahab S. Mirrokni,et al.  Non-monotone submodular maximization under matroid and knapsack constraints , 2009, STOC '09.

[7]  Amin Saberi,et al.  Stochastic Submodular Maximization , 2008, WINE.

[8]  Nicole Immorlica,et al.  Secretary Problems with Competing Employers , 2006, WINE.

[9]  Nimrod Megiddo,et al.  Improved algorithms and analysis for secretary problems and generalizations , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[10]  Philippe Baptiste Scheduling unit tasks to minimize the number of idle periods: a polynomial time algorithm for offline dynamic power management , 2006, SODA '06.

[11]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[12]  Samir Khuller,et al.  The Budgeted Maximum Coverage Problem , 1999, Inf. Process. Lett..

[13]  Nicole Immorlica,et al.  Online auctions and generalized secretary problems , 2008, SECO.

[14]  Jan Vondrák,et al.  Maximizing a Submodular Set Function Subject to a Matroid Constraint (Extended Abstract) , 2007, IPCO.

[15]  P. Freeman The Secretary Problem and its Extensions: A Review , 1983 .

[16]  G. Nemhauser,et al.  Exceptional Paper—Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms , 1977 .

[17]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[18]  Maxim Sviridenko,et al.  An 0.828-approximation Algorithm for the Uncapacitated Facility Location Problem , 1999, Discret. Appl. Math..

[19]  John Augustine,et al.  Optimal power-down strategies , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[20]  George L. Nemhauser,et al.  Note--On "Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms" , 1979 .

[21]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[22]  Nicole Immorlica,et al.  Matroids, secretary problems, and online mechanisms , 2007, SODA '07.

[23]  Maurice Queyranne,et al.  A combinatorial algorithm for minimizing symmetric submodular functions , 1995, SODA '95.

[24]  F. Mosteller,et al.  Recognizing the Maximum of a Sequence , 1966 .

[25]  Kenneth S. Glasser,et al.  The d-Choice Secretary Problem. , 1983 .

[26]  Nicole Immorlica,et al.  A Knapsack Secretary Problem with Applications , 2007, APPROX-RANDOM.

[27]  Morteza Zadimoghaddam,et al.  Scheduling to minimize gaps and power consumption , 2013, Journal of Scheduling.

[28]  Uriel Feige,et al.  Approximating the value of two power proof systems, with applications to MAX 2SAT and MAX DICUT , 1995, Proceedings Third Israel Symposium on the Theory of Computing and Systems.

[29]  Ryan O'Donnell,et al.  Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? , 2007, SIAM J. Comput..

[30]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[31]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[32]  Vahab S. Mirrokni,et al.  Maximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints , 2009, SIAM J. Discret. Math..

[33]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[34]  Vahab S. Mirrokni,et al.  Bid optimization for broad match ad auctions , 2009, WWW '09.

[35]  Maxim Sviridenko,et al.  A note on maximizing a submodular set function subject to a knapsack constraint , 2004, Oper. Res. Lett..

[36]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[37]  Uri Zwick,et al.  Combinatorial approximation algorithms for the maximum directed cut problem , 2001, SODA '01.

[38]  Jan Vondrák,et al.  Symmetry and Approximability of Submodular Maximization Problems , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[39]  Hadas Shachnai,et al.  Maximizing submodular set functions subject to multiple linear constraints , 2009, SODA.

[40]  John G. Wilson Optimal choice and assignment of the best m of n randomly arriving items , 1991 .

[41]  G. Nemhauser,et al.  On the Uncapacitated Location Problem , 1977 .

[42]  Martin Pál,et al.  Algorithms for Secretary Problems on Graphs and Hypergraphs , 2008, ICALP.

[43]  Mohammad Taghi Hajiaghayi,et al.  Adaptive limited-supply online auctions , 2004, EC '04.

[44]  Uriel Feige,et al.  On maximizing welfare when utility functions are subadditive , 2006, STOC '06.