Selection and quality assessment of Landsat data for the North American forest dynamics forest history maps of the US

ABSTRACT Using the NASA Earth Exchange platform, the North American Forest Dynamics (NAFD) project mapped forest history wall-to-wall, annually for the contiguous US (1986–2010) using the Vegetation Change Tracker algorithm. As with any effort to identify real changes in remotely sensed time-series, data gaps, shifts in seasonality, misregistration, inconsistent radiometry and cloud contamination can be sources of error. We discuss the NAFD image selection and processing stream (NISPS) that was designed to minimize these sources of error. The NISPS image quality assessments highlighted issues with the Landsat archive and metadata including inadequate georegistration, unreliability of the pre-2009 L5 cloud cover assessments algorithm, missing growing-season imagery and paucity of clear views. Assessment maps of Landsat 5–7 image quantities and qualities are presented that offer novel perspectives on the growing-season archive considered for this study. Over 150,000+ Landsat images were considered for the NAFD project. Optimally, one high quality cloud-free image in each year or a total of 12,152 images would be used. However, to accommodate data gaps and cloud/shadow contamination 23,338 images were needed. In 220 specific path-row image years no acceptable images were found resulting in data gaps in the annual national map products.

[1]  Cristina Milesi,et al.  Collaborative Supercomputing for Global Change Science , 2011 .

[2]  Valerie A. Thomas,et al.  On-the-Fly Massively Multitemporal Change Detection Using Statistical Quality Control Charts and Landsat Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[3]  John L. Dwyer,et al.  Landsat: building a strong future , 2012 .

[4]  Kevin P. Price,et al.  Julian dates and introduced temporal error in remote sensing vegetation phenology studies , 2008 .

[5]  John L. Dwyer,et al.  North American landscape characterization project: The production of a continental scale three‐decade Landsat data set , 1998 .

[6]  Suming Jin,et al.  Completion of the 2011 National Land Cover Database for the Conterminous United States – Representing a Decade of Land Cover Change Information , 2015 .

[7]  D. Roy,et al.  Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD) , 2014 .

[8]  Chengquan Huang,et al.  Global characterization and monitoring of forest cover using Landsat data: opportunities and challenges , 2012, Int. J. Digit. Earth.

[9]  B. Markham,et al.  Forty-year calibrated record of earth-reflected radiance from Landsat: A review , 2012 .

[10]  David P. Roy,et al.  The Global Availability of Landsat 5 TM and Landsat 7 ETM+ Land Surface Observations and Implications for Global 30m Landsat Data Product Generation , 2013 .

[11]  Frédéric Achard,et al.  A satellite data set for tropical forest area change assessment , 2011 .

[12]  Joanne C. White,et al.  Pixel-Based Image Compositing for Large-Area Dense Time Series Applications and Science , 2014 .

[13]  Scott L. Powell,et al.  Forest Disturbance and North American Carbon Flux , 2008 .

[14]  Jeff Eldenshink,et al.  A 16-year Time Series of 1 km AVHRR Satellite Data of the Conterminous United States and Alaska , 2006 .

[15]  Stephen E. Reichenbach,et al.  Automated cloud cover assessment for Landsat TM images , 1996, Optics & Photonics.

[16]  Chengquan Huang,et al.  NACP NAFD Project: Forest Disturbance History from Landsat, 1986-2010 , 2016 .

[17]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[18]  Jeffrey G. Masek,et al.  Landsat—30 Years and Counting , 2001 .

[19]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[20]  Jesslyn F. Brown,et al.  Measuring phenological variability from satellite imagery , 1994 .

[21]  David P. Roy,et al.  The global Landsat archive: Status, consolidation, and direction , 2016 .

[22]  G. Chander,et al.  Assessment of the NASA–USGS Global Land Survey (GLS) datasets , 2013 .

[23]  Michael A. Wulder,et al.  Landsat continuity: Issues and opportunities for land cover monitoring , 2008 .

[24]  Christopher A. Barnes,et al.  Completion of the 2006 National Land Cover Database for the conterminous United States. , 2011 .

[25]  Considerations of and improvements to large-scale vegetation monitoring , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Chengquan Huang,et al.  Development of time series stacks of Landsat images for reconstructing forest disturbance history , 2009, Int. J. Digit. Earth.

[27]  Robert E. Wolfe,et al.  Automated registration and orthorectification package for Landsat and Landsat-like data processing , 2009 .

[28]  Patrick Hostert,et al.  A Pixel-Based Landsat Compositing Algorithm for Large Area Land Cover Mapping , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[29]  W. Cohen,et al.  Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection , 2005 .

[30]  James C. Storey,et al.  Four years of Landsat-7 on-orbit geometric calibration and performance , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Chengquan Huang,et al.  Automated masking of cloud and cloud shadow for forest change analysis using Landsat images , 2010 .

[32]  Martha C. Anderson,et al.  Free Access to Landsat Imagery , 2008, Science.

[33]  D. Roy,et al.  Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States , 2010 .

[34]  Conghe Song,et al.  Monitoring forest succession with multitemporal Landsat images: factors of uncertainty , 2003, IEEE Trans. Geosci. Remote. Sens..

[35]  Christopher Justice,et al.  The impact of misregistration on change detection , 1992, IEEE Trans. Geosci. Remote. Sens..

[36]  Zhe Zhu,et al.  Object-based cloud and cloud shadow detection in Landsat imagery , 2012 .

[37]  Michael A. Wulder,et al.  Opening the archive: How free data has enabled the science and monitoring promise of Landsat , 2012 .

[38]  S. Goward,et al.  Characterization of the Landsat-7 ETM Automated Cloud-Cover Assessment (ACCA) Algorithm , 2006 .

[39]  C. Justice,et al.  Towards monitoring land-cover and land-use changes at a global scale: the global land survey 2005 , 2008 .

[40]  Joanne C. White,et al.  An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites , 2015 .

[41]  Robert E. Wolfe,et al.  A Landsat surface reflectance dataset for North America, 1990-2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[42]  C. Tucker,et al.  NASA’s Global Orthorectified Landsat Data Set , 2004 .

[43]  N. McDowell,et al.  A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests , 2010 .

[44]  S. Goward,et al.  An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks , 2010 .

[45]  W. Cohen,et al.  Landsat's Role in Ecological Applications of Remote Sensing , 2004 .

[46]  Richard R. Irish,et al.  Landsat 7 automatic cloud cover assessment , 2000, SPIE Defense + Commercial Sensing.

[47]  Y. J. Kaufman,et al.  The effect of subpixel clouds on remote sensing , 1987 .

[48]  Chengquan Huang,et al.  A Landsat 7 scene selection strategy for a national land cover database , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[49]  Thomas R. Loveland,et al.  A review of large area monitoring of land cover change using Landsat data , 2012 .

[50]  Y. J. Kaufman,et al.  The effect of subpixel clouds on remote sensing , 1987 .

[51]  Darrel L. Williams,et al.  Historical record of Landsat global coverage: mission operations, NSLRSDA, and International Cooperator stations , 2006 .

[52]  Alan H. Strahler,et al.  Global vegetation phenology from AVHRR and MODIS data , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[53]  Wei Gao,et al.  Modeling the land surface heat exchange process with the aid of moderate resolution imaging spectroradiomer images , 2009 .

[54]  Chengquan Huang,et al.  Methodology to select phenologically suitable Landsat scenes for forest change detection , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[55]  Jeffrey G. Masek,et al.  Large Area Scene Selection Interface (LASSI): Methodology of Selecting Landsat Imagery for the Global Land Survey 2005. , 2009 .

[56]  W. Cohen,et al.  United States Forest Disturbance Trends Observed Using Landsat Time Series , 2013, Ecosystems.

[57]  C. Woodcock,et al.  Continuous monitoring of forest disturbance using all available Landsat imagery , 2012 .

[58]  Amit Angal,et al.  Using the Sonoran and Libyan Desert test sites to monitor the temporal stability of reflective solar bands for Landsat 7 enhanced thematic mapper plus and Terra moderate resolution imaging spectroradiometer sensors , 2010 .

[59]  Julia A. Barsi,et al.  The next Landsat satellite: The Landsat Data Continuity Mission , 2012 .