Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation

[1]  Nan Zhang,et al.  Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. , 2013, Nanoscale.

[2]  Y. Mok,et al.  Plasma-assisted catalytic methanation of CO and CO2 over Ni–zeolite catalysts , 2013 .

[3]  Delphine Bazer-Bachi,et al.  Role of oxygen vacancies in the basicity of ZnO: From the model methylbutynol conversion to the ethanol transformation application , 2013 .

[4]  Baowang Lu,et al.  Preparation of the highly loaded and well-dispersed NiO/SBA-15 for methanation of producer gas , 2013 .

[5]  B. Hameed,et al.  Amino modified mesostructured silica nanoparticles for efficient adsorption of methylene blue. , 2012, Journal of colloid and interface science.

[6]  O. A. Ponomareva,et al.  Skeletal isomerization of 1-butene over micro/mesoporous materials based on FER zeolite , 2012 .

[7]  A. A. Jalil,et al.  Ir/Pt-HZSM5 for n-pentane isomerization: Effect of iridium loading on the properties and catalytic activity , 2012 .

[8]  H. Zeng,et al.  Targeted synthesis of silicomolybdic acid (Keggin acid) inside mesoporous silica hollow spheres for Friedel-Crafts alkylation. , 2012, Journal of the American Chemical Society.

[9]  F. Dumeignil,et al.  A comparison of sol–gel and impregnated Pt or/and Ni based γ-alumina catalysts for bioglycerol aqueous phase reforming , 2012 .

[10]  P. Bertrand,et al.  CO2 methanation on Rh/γ-Al2O3 catalyst at low temperature: “In situ” supply of hydrogen by Ni/activated carbon catalyst , 2012 .

[11]  Weimin Yang,et al.  Highly dispersed nickel loaded on mesoporous silica: One-spot synthesis strategy and high performance as catalysts for methane reforming with carbon dioxide , 2012 .

[12]  L. E. Borges,et al.  The Ni/ZrO2 catalyst and the methanation of CO and CO2 , 2012 .

[13]  Michela Signoretto,et al.  Ni/SiO2 and Ni/ZrO2 catalysts for the steam reforming of ethanol , 2012 .

[14]  Ryuji Kikuchi,et al.  Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures , 2012 .

[15]  Antoine Beuls,et al.  Methanation of CO2: Further insight into the mechanism over Rh/gamma-Al2O3 catalyst , 2012 .

[16]  E. Kondratenko,et al.  Stable low-temperature dry reforming of methane over mesoporous La2O3-ZrO2 supported Ni catalyst , 2012 .

[17]  P. Ruiz,et al.  CO2 hydrogenation at low temperature over Rh/gamma-Al2O3 catalysts: effect of the metal particle size on catalytic performances and reaction mechanism , 2012 .

[18]  N. N. Ruslan,et al.  Study of the interaction between hydrogen and the MoO3–ZrO2 catalyst , 2012 .

[19]  G. Keskar,et al.  Deactivation characteristics of Ni/CeO2-Al2O3 catalyst for cyclic regeneration in a portable steam reformer , 2012 .

[20]  G. Cerrato,et al.  Glycerol steam reforming for hydrogen production: Design of Ni supported catalysts , 2012 .

[21]  A. A. Jalil,et al.  Negative effect of NI on PTHY in n-pentane isomerization evidenced by IR and ESR studies , 2012 .

[22]  S. Che,et al.  pH-Responsive Drug Delivery System Based on Coordination Bonding in a Mesostructured Surfactant/Silica Hybrid , 2011 .

[23]  Zhenpeng Hu,et al.  CO2 methanation on Ru-doped ceria , 2011 .

[24]  R. Behm,et al.  Reaction Intermediates and Side Products in the Methanation of CO and CO2 over Supported Ru Catalysts in H2-Rich Reformate Gases† , 2011 .

[25]  Po-Wen Chung,et al.  Facile Synthesis of Monodisperse Spherical MCM-48 Mesoporous Silica Nanoparticles with Controlled Particle Size , 2010 .

[26]  F. Pinna,et al.  Mesoporous silica as supports for Pd-catalyzed H2O2 direct synthesis: Effect of the textural properties of the support on the activity and selectivity , 2010 .

[27]  T. Bein,et al.  Controlling the delivery kinetics from colloidal mesoporous silica nanoparticles with pH-sensitive gates , 2010 .

[28]  Xionggang Lu,et al.  Catalytic conversion of tar from hot coke oven gas using 1-methylnaphthalene as a tar model compound , 2010 .

[29]  Hyuck-Mo Lee,et al.  Bifunctional Mechanism of CO2 Methanation on Pd-MgO/SiO2 Catalyst: Independent Roles of MgO and Pd on CO2 Methanation , 2010 .

[30]  V. Zeleňák,et al.  Insight into surface heterogenity of SBA-15 silica: Oxygen related defects and magnetic properties , 2010 .

[31]  Christy L Haynes,et al.  Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. , 2010, Journal of the American Chemical Society.

[32]  J. Fraser Stoddart,et al.  Mesostructured multifunctional nanoparticles for imaging and drug delivery , 2009 .

[33]  Eric W. McFarland,et al.  A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2 , 2009 .

[34]  E. V. Gusevskaya,et al.  Cobalt-catalyzed oxidation of terpenes: Co-MCM-41 as an efficient shape-selective heterogeneous catalyst for aerobic oxidation of isolongifolene under solvent-free conditions , 2009 .

[35]  Y. Gofer,et al.  Methanation of Carbon Dioxide on Ni Catalysts on Mesoporous ZrO2 Doped with Rare Earth Oxides , 2009 .

[36]  T. Abe,et al.  CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method , 2009 .

[37]  F. Jiao,et al.  Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. , 2009, Angewandte Chemie.

[38]  Aaron J. Sathrum,et al.  Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. , 2009, Chemical Society reviews.

[39]  Wen-Yueh Yu,et al.  Pt/titania-nanotube: A potential catalyst for CO2 adsorption and hydrogenation , 2008 .

[40]  Vito Specchia,et al.  CO-selective methanation over Ru–γAl2O3 catalysts in H2-rich gas for PEM FC applications , 2008 .

[41]  M. Rønning,et al.  Preface: 12th Nordic Symposium on Catalysis, Trondheim, Norway, May 28–30, 2006 , 2007 .

[42]  Thomas Bligaard,et al.  Discovery of technical methanation catalysts based on computational screening , 2007 .

[43]  L. Pfefferle,et al.  Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts: The influence of catalyst pretreatment and study of steady-state reaction , 2007 .

[44]  H. K. Poswal,et al.  Nature of Vn+ ions in SnO2: EPR and photoluminescence studies , 2007 .

[45]  H. Habazaki,et al.  Effect of tetragonal ZrO2 on the catalytic activity of Ni/ZrO2 catalyst prepared from amorphous Ni–Zr alloys , 2006 .

[46]  Aiqin Wang,et al.  Au-Ag alloy nanoparticle as catalyst for CO oxidation: Effect of Si/Al ratio of mesoporous support , 2006 .

[47]  P. Kooyman,et al.  Synthesis of well-dispersed ruthenium nanoparticles inside mesostructured porous silica under mild conditions , 2005 .

[48]  Alexandre Goguet,et al.  Spectrokinetic Investigation of Reverse Water-Gas-Shift Reaction Intermediates over a Pt/CeO2 Catalyst , 2004 .

[49]  Kiyoshi Otsuka,et al.  Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts , 2004 .

[50]  T. Blasco,et al.  Investigation on the nature of the adsorption sites of pyrrole in alkali-exchanged zeolite y by nuclear magnetic resonance in combination with infrared spectroscopy. , 2002, Journal of the American Chemical Society.

[51]  Yasuhiro Sakamoto,et al.  Direct imaging of the pores and cages of three-dimensional mesoporous materials , 2000, Nature.

[52]  P. Kooyman,et al.  Assembly of Mesoporous Silica Molecular Sieves Based on Nonionic Ethoxylated Sorbitan Esters as Structure Directors , 1999 .

[53]  Gao Qing Lu,et al.  CO2 reforming of methane on Ni catalysts: Effects of the support phase and preparation technique , 1998 .

[54]  P. Massiani,et al.  BASIC SITE HETEROGENEITY AND LOCATION IN ALKALI CATION EXCHANGED EMT ZEOLITE. AN IR STUDY USING ADSORBED PYRROLE , 1996 .

[55]  J. Lavalley,et al.  Use of pyrrole as an IR spectroscopic molecular probe in a surface basicity study of metal oxides , 1996 .

[56]  H. Hattori Heterogeneous Basic Catalysis , 1995 .

[57]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[58]  H. Hattori,et al.  Basic sites on alkali ion-added zeolite , 1991 .

[59]  M. Grätzel,et al.  Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure , 1987, Nature.

[60]  H. S. Fogler,et al.  Elements of Chemical Reaction Engineering , 1986 .

[61]  F. Massoth,et al.  Effect of pressure and temperature on restrictive diffusion of solutes in aluminas , 1985 .

[62]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[63]  D. Goodman,et al.  Methanation of carbon dioxide on Ni(100) and the effects of surface modifiers , 1983 .

[64]  C. H. Bartholomew,et al.  Hydrogenation of carbon dioxide on group viii metals: III, Effects of support on activity/selectivity and adsorption properties of nickel , 1983 .

[65]  F. Solymosi,et al.  Methanation of CO2 on supported rhodium catalyst , 1981 .

[66]  F. Solymosi,et al.  Methanation of CO2 on supported Ru catalysts , 1981 .

[67]  P. Rouxhet,et al.  Characterization of the Basicity of Oxides Through the Infrared Study of Pyrrole Adsorption , 1980 .

[68]  InuiTomoyuki,et al.  METHANATION OF CARBON DIOXIDE AND CARBON MONOXIDE ON SUPPORTED Ni–La2O3–Ru CATALYST , 1978 .

[69]  W. A. Jong,et al.  Kinetics of the methanation of CO and CO2 on a nickel catalyst , 1973 .

[70]  S. J. Gregg,et al.  Adsorption Surface Area and Porosity , 1967 .

[71]  B. Cullity,et al.  Elements of X-ray diffraction , 1957 .