Muller C-Element Metastability Containment

Metastability is the source of many unexpected errors in synchronous circuits. Its mitigation is very well researched in this domain. In contrast, for asynchronous circuits it is normally assumed that the handshaking inhibits metastability. This is, however, only true within the timing closure of the circuit and in the absence of external faults. Metastability may well arise in asynchronous circuits when latching external input signals or when fault tolerance considerations require relaxing the timing closure. Therefore, this paper studies the vulnerability of asynchronous circuits to metastability at the example of a Muller-C element. Traditional mitigation techniques are applied to this kind of circuits and their fitness for Muller-C elements is analyzed.

[1]  Charles E. Molnar,et al.  Anomalous Behavior of Synchronizer and Arbiter Circuits , 1973, IEEE Transactions on Computers.

[2]  Jens Sparsø,et al.  Principles of Asynchronous Circuit Design , 2001 .

[3]  Eby G. Friedman,et al.  Clock distribution networks in synchronous digital integrated circuits , 2001, Proc. IEEE.

[4]  Ivor Catt,et al.  Time Loss Through Gating of Asynchronous Logic Signal Pulses , 1966, IEEE Trans. Electron. Comput..

[5]  Mark R. Greenstreet,et al.  Real-time merging , 1999, Proceedings. Fifth International Symposium on Advanced Research in Asynchronous Circuits and Systems.

[6]  Antonio Cantoni,et al.  On the Unavoidability of Metastable Behavior in Digital Systems , 1987, IEEE Transactions on Computers.

[7]  Andreas Steininger,et al.  On the Threat of Metastability in an Asynchronous Fault-Tolerant Clock Generation Scheme , 2009, 2009 15th IEEE Symposium on Asynchronous Circuits and Systems.

[8]  Fu-Chiung Cheng,et al.  Efficient systematic error-correcting codes for semi-delay-insensitive data transmission , 2001, Proceedings 2001 IEEE International Conference on Computer Design: VLSI in Computers and Processors. ICCD 2001.

[9]  Suwen Yang,et al.  Simulating Improbable Events , 2007, 2007 44th ACM/IEEE Design Automation Conference.

[10]  A. Albicki,et al.  Analysis of mesastable operation in RS CMOS flip-flops , 1987 .

[11]  D. J. Kinniment Synchronization and Arbitration in Digital Systems , 2008 .

[12]  Alain J. Martin,et al.  Crossing the Synchronous-Asynchronous Divide , 2002 .

[13]  Lynn Conway,et al.  Introduction to VLSI systems , 1978 .

[14]  Antonio Cantoni,et al.  Metastable Behavior in Digital Systems , 1987, IEEE Design & Test of Computers.

[15]  Mohamed I. Elmasry,et al.  A comparison of CMOS implementations of an asynchronous circuits primitive: the C-element , 1996, Proceedings of 1996 International Symposium on Low Power Electronics and Design.

[16]  David J. Kinniment,et al.  Synchronization circuit performance , 2002 .

[17]  Jun Zhou,et al.  On-Chip Measurement of Deep Metastability in Synchronizers , 2008, IEEE Journal of Solid-State Circuits.

[18]  Kaushik Roy,et al.  Exploring Asynchronous Design Techniques for Process-Tolerant and Energy-Efficient Subthreshold Operation , 2010, IEEE Journal of Solid-State Circuits.

[19]  Hendrikus J. M. Veendrick,et al.  The behaviour of flip-flops used as synchronizers and prediction of their failure rate , 1980 .

[20]  Steven M. Nowick,et al.  High-Performance Asynchronous Pipelines: An Overview , 2011, IEEE Design & Test of Computers.

[21]  Steve Furber,et al.  Principles of Asynchronous Circuit Design: A Systems Perspective , 2010 .

[22]  Samuel D. Naffziger,et al.  The implementation of the Itanium 2 microprocessor , 2002, IEEE J. Solid State Circuits.

[23]  Ran Ginosar Fourteen ways to fool your synchronizer , 2003, Ninth International Symposium on Asynchronous Circuits and Systems, 2003. Proceedings..