Detection and estimation translations of large images using random projections

This paper describes a technique of fast detection and estimation of translations in large image frames for image stabilization. Our approach is based on random projection methodology for reduction of image dimension which retain with prescribed accuracy and probability the squared Euclidean norm of projected vectors (image's rows and columns). We formulate simple optimization problems for estimation of vertical and horizontal motions of the frame. The first one tries to find the best match between energies (squared norms) of rows (columns) of the actual projected image and the projected reference frame. The second one uses the squared Euclidean distance between the same objects. An iterative procedure based on the successive, alternate estimation of a vertical and a horizontal translation is proposed.

[1]  David J. Fleet,et al.  Optical Flow Estimation , 2006, Handbook of Mathematical Models in Computer Vision.

[2]  Andreas E. Savakis,et al.  A random projections model for object tracking under variable pose and multi-camera views , 2009, 2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC).

[3]  Shang-Hong Lai,et al.  A robust real-time video stabilization algorithm , 2006, J. Vis. Commun. Image Represent..

[4]  Kenneth Ward Church,et al.  Improving Random Projections Using Marginal Information , 2006, COLT.

[5]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[6]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[7]  S. G. Hoggar Mathematics of Digital Images: List of symbols , 2006 .

[8]  Jeremy Buhler,et al.  Finding Motifs Using Random Projections , 2002, J. Comput. Biol..

[9]  J. Matousek,et al.  On variants of the Johnson–Lindenstrauss lemma , 2008 .

[10]  Santosh S. Vempala,et al.  The Random Projection Method , 2005, DIMACS Series in Discrete Mathematics and Theoretical Computer Science.

[11]  Kun Liu,et al.  Random projection-based multiplicative data perturbation for privacy preserving distributed data mining , 2006, IEEE Transactions on Knowledge and Data Engineering.

[12]  Roberto Brunelli,et al.  Advanced , 1980 .

[13]  Bernard Chazelle,et al.  Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform , 2006, STOC '06.

[14]  B. N. Chatterji,et al.  An FFT-based technique for translation, rotation, and scale-invariant image registration , 1996, IEEE Trans. Image Process..

[15]  José Carlos Príncipe,et al.  Enhancing the correntropy MACE filter with random projections , 2008, Neurocomputing.

[16]  Ewa Skubalska-Rafajlowicz Local Correlation and Entropy Maps as Tools for Detecting Defects in Industrial Images , 2008, Int. J. Appl. Math. Comput. Sci..

[17]  Piotr Indyk,et al.  Nearest-neighbor-preserving embeddings , 2007, TALG.

[18]  Petros Drineas,et al.  Fast Monte Carlo Algorithms for Matrices I: Approximating Matrix Multiplication , 2006, SIAM J. Comput..

[19]  Andrea Fusiello,et al.  Image stabilization by features tracking , 1999, Proceedings 10th International Conference on Image Analysis and Processing.

[20]  Ewa Skubalska-Rafajlowicz Clustering of Data and Nearest Neighbors Search for Pattern Recognition with Dimensionality Reduction Using Random Projections , 2010, ICAISC.

[21]  Jeremy Buhler,et al.  Finding motifs using random projections , 2001, RECOMB.

[22]  Jyh-Yeong Chang,et al.  Digital image translational and rotational motion stabilization using optical flow technique , 2002, IEEE Trans. Consumer Electron..

[23]  José J. Amador Random projection and orthonormality for lossy image compression , 2007, Image Vis. Comput..

[24]  Jan Modersitzki,et al.  Numerical Methods for Image Registration , 2004 .

[25]  Ewa Skubalska-Rafajlowicz,et al.  Random Projection RBF Nets for Multidimensional Density Estimation , 2008, Int. J. Appl. Math. Comput. Sci..

[26]  John L. Semmlow,et al.  Biosignal and biomedical image processing : MATLAB-based applications , 2004 .

[27]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  S. Erturk,et al.  Digital image stabilization with sub-image phase correlation based global motion estimation , 2003, IEEE Trans. Consumer Electron..

[29]  Jorge Herbert de Lira,et al.  Two-Dimensional Signal and Image Processing , 1989 .

[30]  E. Skubalska-Rafajlowicz Neural networks with sigmoidal activation functions—dimension reduction using normal random projection , 2009 .

[31]  Bülent Sankur,et al.  Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.

[32]  Hubert W. Schreier,et al.  Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts,Theory and Applications , 2009 .

[33]  S.G. Hoggar Mathematics of Digital Images: Creation, Compression, Restoration, Recognition (Hoggar, S.G.; 2006) [Book Review] , 2008, IEEE Signal Processing Magazine.

[34]  Mark S. Nixon,et al.  Feature Extraction and Image Processing , 2002 .

[35]  Heikki Mannila,et al.  Random projection in dimensionality reduction: applications to image and text data , 2001, KDD '01.

[36]  Hazarathaiah Malepati,et al.  Digital Media Processing: DSP Algorithms Using C , 2010 .

[37]  Peter Frankl,et al.  The Johnson-Lindenstrauss lemma and the sphericity of some graphs , 1987, J. Comb. Theory B.

[38]  Bede Liu,et al.  New fast algorithms for the estimation of block motion vectors , 1993, IEEE Trans. Circuits Syst. Video Technol..

[39]  Kenneth Ward Church,et al.  Nonlinear Estimators and Tail Bounds for Dimension Reduction in l1 Using Cauchy Random Projections , 2006, J. Mach. Learn. Res..

[40]  Sung-Jea Ko,et al.  Fast digital image stabilizer based on Gray-coded bit-plane matching , 1999, 1999 Digest of Technical Papers. International Conference on Consumer Electronics (Cat. No.99CH36277).

[41]  Sanjoy Dasgupta,et al.  An elementary proof of a theorem of Johnson and Lindenstrauss , 2003, Random Struct. Algorithms.

[42]  S. G. Hoggar Mathematics of Digital Images: Frontmatter , 2006 .

[43]  Dimitris Achlioptas,et al.  Database-friendly random projections , 2001, PODS.