Eulerian Gaussian beams for Schrödinger equations in the semi-classical regime

We propose Gaussian-beam based Eulerian methods to compute semi-classical solutions of the Schrodinger equation. Traditional Gaussian beam type methods for the Schrodinger equation are based on the Lagrangian ray tracing. Based on the first Eulerian Gaussian beam framework proposed in Leung et al. [S. Leung, J. Qian, R. Burridge, Eulerian Gaussian beams for high frequency wave propagation, Geophysics 72 (2007) SM61-SM76], we develop a new Eulerian Gaussian beam method which uses global Cartesian coordinates, level-set based implicit representation and Liouville equations. The resulting method gives uniformly distributed phases and amplitudes in phase space simultaneously. To obtain semi-classical solutions to the Schrodinger equation with different initial wave functions, we only need to slightly modify the summation formula. This yields a very efficient method for computing semi-classical solutions to the Schrodinger equation. For instance, in the one-dimensional case the proposed algorithm requires only O(sNm2) operations to compute s different solutions with s different initial wave functions under the influence of the same potential, where N=O(1/), is the Planck constant, and m N is the number of computed beams which depends on weakly. Numerical experiments indicate that this Eulerian Gaussian beam approach yields accurate semi-classical solutions even at caustics.

[1]  S. Osher,et al.  A LEVEL SET METHOD FOR THE COMPUTATION OF MULTIVALUED SOLUTIONS TO QUASI-LINEAR HYPERBOLIC PDES AND HAMILTON-JACOBI EQUATIONS , 2003 .

[2]  N. Tanushev Superpositions and higher order Gaussian beams , 2008 .

[3]  R. Newcomb VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS , 2010 .

[4]  Shingyu Leung,et al.  A level set based Eulerian method for paraxial multivalued traveltimes , 2004 .

[5]  Evans M. Harrell The Complex WKB Method for Nonlinear Equations 1: Linear Theory (Victor P. Maslov) , 1996, SIAM Rev..

[6]  Peter A. Markowich,et al.  Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit , 1999, Numerische Mathematik.

[7]  N. R. Hill,et al.  Gaussian beam migration , 1990 .

[8]  J. Qian,et al.  The fundamental solution of the time-dependent system of crystal optics , 2006, European Journal of Applied Mathematics.

[9]  O. Runborg Mathematical Models and Numerical Methods for High Frequency Waves , 2007 .

[10]  Jianliang Qian,et al.  A Local Level Set Method for Paraxial Geometrical Optics , 2006, SIAM J. Sci. Comput..

[11]  S. Osher,et al.  A LEVEL SET METHOD FOR THREE-DIMENSIONAL PARAXIAL GEOMETRICAL OPTICS WITH MULTIPLE POINT SOURCES ⁄ , 2004 .

[12]  Stanley Osher,et al.  Geometric Optics in a Phase-Space-Based Level Set and Eulerian Framework , 2002 .

[13]  Yuri Safarov,et al.  AN INTRODUCTION TO SEMICLASSICAL AND MICROLOCAL ANALYSIS (Universitext) By ANDRÉ MARTINEZ: 190 pp., £49.00 (US$59.95), ISBN 0-387-95344-2 (Springer, New York, 2002) , 2003 .

[14]  Eric J. Heller Guided Gaussian Wave Packets , 2006 .

[15]  Stanley Osher,et al.  A level set method for the computation of multi-valued solutions to quasi-linear hyperbolic PDE's and Hamilton-Jacobi equations , 2003 .

[16]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[17]  Donald Ludwig,et al.  Uniform asymptotic expansions at a caustic , 1966 .

[18]  André Martinez,et al.  An Introduction to Semiclassical and Microlocal Analysis , 2002 .

[19]  E. Kluk,et al.  Comparison of the propagation of semiclassical frozen Gaussian wave functions with quantum propagation for a highly excited anharmonic oscillator , 1986 .

[20]  Peter A. Markowich,et al.  A Wigner-Measure Analysis of the Dufort-Frankel Scheme for the Schrödinger Equation , 2002, SIAM J. Numer. Anal..

[21]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[22]  L. Hörmander,et al.  On the existence and the regularity of solutions of linear pseudo-differential equations , 1971 .

[23]  S. Osher,et al.  A Level Set Method for Three-dimensional Paraxial Geometrical Optics with Multiple Sources , 2004 .

[24]  J. Butcher Implicit Runge-Kutta processes , 1964 .

[25]  S. Osher,et al.  COMPUTATIONAL HIGH-FREQUENCY WAVE PROPAGATION USING THE LEVEL SET METHOD, WITH APPLICATIONS TO THE SEMI-CLASSICAL LIMIT OF SCHRÖDINGER EQUATIONS∗ , 2003 .

[26]  S. Osher,et al.  A level set-based Eulerian approach for anisotropic wave propagation , 2003 .

[27]  A. Boag,et al.  A phase-space beam summation formulation for ultrawide-band radiation , 2004, IEEE Transactions on Antennas and Propagation.

[28]  Victor Pavlovich Maslov,et al.  Semi-classical approximation in quantum mechanics , 1981 .

[29]  M. M. Popov,et al.  Computation of wave fields in inhomogeneous media — Gaussian beam approach , 1982 .

[30]  James Ralston,et al.  Mountain Waves and Gaussian Beams , 2007, Multiscale Model. Simul..

[31]  Rainer Lienhart,et al.  Fast Gabor Transformation For Processing High Quality Audio , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[32]  Martin Hairer,et al.  GniCodes - Matlab programs for geometric numerical integration , 2003 .

[33]  Stanley Osher,et al.  Computing multivalued physical observables for the semiclassical limit of the Schrödinger equation , 2005 .

[34]  Eric J. Heller,et al.  Cellular dynamics: A new semiclassical approach to time‐dependent quantum mechanics , 1991 .

[35]  Feng Zhou,et al.  Discrete Gabor transforms with complexity O (NlogN) , 1999, Signal Process..

[36]  Shingyu Leung,et al.  Eulerian Gaussian Beams for High Frequency Wave Propagation , 2007 .

[37]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[38]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[39]  Victor P. Maslov,et al.  The complex WKB method for nonlinear equations I , 1994 .

[40]  S. Osher,et al.  Multi-Valued Solution and Level Set Methods in Computational High Frequency Wave Propagation , 2006 .

[41]  Chohong Min,et al.  Simplicial isosurfacing in arbitrary dimension and codimension , 2003 .