Eulerian Gaussian beams for Schrödinger equations in the semi-classical regime
暂无分享,去创建一个
[1] S. Osher,et al. A LEVEL SET METHOD FOR THE COMPUTATION OF MULTIVALUED SOLUTIONS TO QUASI-LINEAR HYPERBOLIC PDES AND HAMILTON-JACOBI EQUATIONS , 2003 .
[2] N. Tanushev. Superpositions and higher order Gaussian beams , 2008 .
[3] R. Newcomb. VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS , 2010 .
[4] Shingyu Leung,et al. A level set based Eulerian method for paraxial multivalued traveltimes , 2004 .
[5] Evans M. Harrell. The Complex WKB Method for Nonlinear Equations 1: Linear Theory (Victor P. Maslov) , 1996, SIAM Rev..
[6] Peter A. Markowich,et al. Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit , 1999, Numerische Mathematik.
[7] N. R. Hill,et al. Gaussian beam migration , 1990 .
[8] J. Qian,et al. The fundamental solution of the time-dependent system of crystal optics , 2006, European Journal of Applied Mathematics.
[9] O. Runborg. Mathematical Models and Numerical Methods for High Frequency Waves , 2007 .
[10] Jianliang Qian,et al. A Local Level Set Method for Paraxial Geometrical Optics , 2006, SIAM J. Sci. Comput..
[11] S. Osher,et al. A LEVEL SET METHOD FOR THREE-DIMENSIONAL PARAXIAL GEOMETRICAL OPTICS WITH MULTIPLE POINT SOURCES ⁄ , 2004 .
[12] Stanley Osher,et al. Geometric Optics in a Phase-Space-Based Level Set and Eulerian Framework , 2002 .
[13] Yuri Safarov,et al. AN INTRODUCTION TO SEMICLASSICAL AND MICROLOCAL ANALYSIS (Universitext) By ANDRÉ MARTINEZ: 190 pp., £49.00 (US$59.95), ISBN 0-387-95344-2 (Springer, New York, 2002) , 2003 .
[14] Eric J. Heller. Guided Gaussian Wave Packets , 2006 .
[15] Stanley Osher,et al. A level set method for the computation of multi-valued solutions to quasi-linear hyperbolic PDE's and Hamilton-Jacobi equations , 2003 .
[16] J. Linnett,et al. Quantum mechanics , 1975, Nature.
[17] Donald Ludwig,et al. Uniform asymptotic expansions at a caustic , 1966 .
[18] André Martinez,et al. An Introduction to Semiclassical and Microlocal Analysis , 2002 .
[19] E. Kluk,et al. Comparison of the propagation of semiclassical frozen Gaussian wave functions with quantum propagation for a highly excited anharmonic oscillator , 1986 .
[20] Peter A. Markowich,et al. A Wigner-Measure Analysis of the Dufort-Frankel Scheme for the Schrödinger Equation , 2002, SIAM J. Numer. Anal..
[21] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[22] L. Hörmander,et al. On the existence and the regularity of solutions of linear pseudo-differential equations , 1971 .
[23] S. Osher,et al. A Level Set Method for Three-dimensional Paraxial Geometrical Optics with Multiple Sources , 2004 .
[24] J. Butcher. Implicit Runge-Kutta processes , 1964 .
[25] S. Osher,et al. COMPUTATIONAL HIGH-FREQUENCY WAVE PROPAGATION USING THE LEVEL SET METHOD, WITH APPLICATIONS TO THE SEMI-CLASSICAL LIMIT OF SCHRÖDINGER EQUATIONS∗ , 2003 .
[26] S. Osher,et al. A level set-based Eulerian approach for anisotropic wave propagation , 2003 .
[27] A. Boag,et al. A phase-space beam summation formulation for ultrawide-band radiation , 2004, IEEE Transactions on Antennas and Propagation.
[28] Victor Pavlovich Maslov,et al. Semi-classical approximation in quantum mechanics , 1981 .
[29] M. M. Popov,et al. Computation of wave fields in inhomogeneous media — Gaussian beam approach , 1982 .
[30] James Ralston,et al. Mountain Waves and Gaussian Beams , 2007, Multiscale Model. Simul..
[31] Rainer Lienhart,et al. Fast Gabor Transformation For Processing High Quality Audio , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.
[32] Martin Hairer,et al. GniCodes - Matlab programs for geometric numerical integration , 2003 .
[33] Stanley Osher,et al. Computing multivalued physical observables for the semiclassical limit of the Schrödinger equation , 2005 .
[34] Eric J. Heller,et al. Cellular dynamics: A new semiclassical approach to time‐dependent quantum mechanics , 1991 .
[35] Feng Zhou,et al. Discrete Gabor transforms with complexity O (NlogN) , 1999, Signal Process..
[36] Shingyu Leung,et al. Eulerian Gaussian Beams for High Frequency Wave Propagation , 2007 .
[37] P. Markowich,et al. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .
[38] Martin D. Buhmann,et al. Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.
[39] Victor P. Maslov,et al. The complex WKB method for nonlinear equations I , 1994 .
[40] S. Osher,et al. Multi-Valued Solution and Level Set Methods in Computational High Frequency Wave Propagation , 2006 .
[41] Chohong Min,et al. Simplicial isosurfacing in arbitrary dimension and codimension , 2003 .