Inverse problems for a class of measure dependent dynamical systems

Abstract : We consider a class of probability measure dependent dynamical systems which arise in the study of multiscale phenomena in diverse fields such as immunological population dynamics, viscoelasticity of polymers and rubber and polarization in dielectric materials. We develop an inverse problem framework for studying systems with distributed temporal delays. In particular, we establish conditions for existence and uniqueness of the forward problem and well-posedness (including method stability under numerical approximations) for the inverse problem of estimating the probability measures. We show that a motivating class of models of HIV infection dynamics satisfies all the conditions of our framework, thereby providing a theoretical foundation for inverse problem computations with these models.

[1]  Harvey Thomas Banks,et al.  Identification of Hysteretic Control Influence Operators Representing Smart Actuators Part I: Formulation , 1997 .

[2]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[3]  S. Ruan,et al.  A delay-differential equation model of HIV infection of CD4(+) T-cells. , 2000, Mathematical biosciences.

[4]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[5]  H. Banks,et al.  Spline approximations for functional differential equations , 1979 .

[6]  A S Perelson,et al.  Effect of Drug Efficacy and the Eclipse Phase of the Viral Life Cycle on Estimates of HIV Viral Dynamic Parameters , 2001, Journal of acquired immune deficiency syndromes.

[7]  A. Visintin Differential models of hysteresis , 1994 .

[8]  A. Perelson,et al.  Influence of delayed viral production on viral dynamics in HIV-1 infected patients. , 1998, Mathematical biosciences.

[9]  A. Perelson,et al.  A model of HIV-1 pathogenesis that includes an intracellular delay. , 2000, Mathematical biosciences.

[10]  Bert Fristedt,et al.  A modern approach to probability theory , 1996 .

[11]  Well-posedness Results for Models of Elastomers , 2002 .

[12]  Harvey Thomas Banks,et al.  A well-posedness Result for a Shear Wave Propagation Model , 2003 .

[13]  David M. Bortz,et al.  Modeling, Analysis, and Estimation of an in vitro HIV Infection Using Functional Differential Equations , 2002 .

[14]  E. J. McShane Relaxed Controls and Variational Problems , 1967 .

[15]  Jaap Goudsmit,et al.  Ongoing HIV dissemination during HAART , 1999, Nature Medicine.

[16]  D M Bortz,et al.  Incorporation of variability into the modeling of viral delays in HIV infection dynamics. , 2003, Mathematical biosciences.

[17]  Y. Fung,et al.  Biomechanics: Mechanical Properties of Living Tissues , 1981 .

[18]  J. Warga,et al.  Functions of Relaxed Controls , 1967 .

[19]  Michel Loève,et al.  Probability Theory I , 1977 .

[20]  Harvey Thomas Banks,et al.  Multiscale Considerations in Modeling of Nonlinear Elastomers , 2007 .

[21]  Harvey Thomas Banks Approximation of nonlinear functional differential equation control systems , 1979 .

[22]  H. T. Banks,et al.  Well-posedness in Maxwell systems with distributions of polarization relaxation parameters , 2005, Appl. Math. Lett..

[23]  A. L. Lloyd,et al.  The dependence of viral parameter estimates on the assumed viral life cycle: limitations of studies of viral load data , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[24]  H. Bergström,et al.  Weak convergence of measures , 1982 .

[25]  H. T. Banks,et al.  A Probabilistic Multiscale Approach to Hysteresis in Shear Wave Propagation in Biotissue , 2005, Multiscale Model. Simul..

[26]  H. Banks Incorporation of uncertainty in inverse problems , 2003 .

[27]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[28]  J. Warga Optimal Control of Ordinary Differential Equations , 1972 .

[29]  Harvey Thomas Banks,et al.  Modeling and estimating uncertainty in parameter estimation , 2001 .

[30]  H. T. Banks IDENTIFICATION OF NONLINEAR DELAY SYSTEMS USING SPLINE METHODS , 1980 .

[31]  M. Krasnosel’skiǐ,et al.  Systems with Hysteresis , 1989 .

[32]  H. T. Banks,et al.  Electromagnetic material interrogation using conductive interfaces and acoustic wavefronts , 2000, Frontiers in applied mathematics.

[33]  H. Bergström WEAK CONVERGENCE ON R (k) , 1982 .

[34]  H. Banks,et al.  Identification of Hysteretic Control Influence Operators Representing Smart Actuators, Part II: Convergent Approximations , 1997 .

[35]  Patrick W Nelson,et al.  Mathematical analysis of delay differential equation models of HIV-1 infection. , 2002, Mathematical biosciences.

[36]  J. Warga Optimal control of differential and functional equations , 1972 .