Abstract machines, optimal reduction, and streams
暂无分享,去创建一个
[1] Leslie G. Valiant,et al. A bridging model for multi-core computing , 2008, J. Comput. Syst. Sci..
[2] Francesco Quaglia,et al. PELCR: Parallel environment for optimal lambda-calculus reduction , 2007, TOCL.
[3] Jorge Sousa Pinto. Parallel Implementation Models for the lambda-Calculus Using the Geometry of Interaction , 2001, TLCA.
[4] Patrick Baillot,et al. Elementary Complexity and Geometry of Interaction , 1999, Fundam. Informaticae.
[5] Frédéric Gava,et al. An ML Implementation of the MULTI-BSP Model , 2018, 2018 International Conference on High Performance Computing & Simulation (HPCS).
[6] Vincent Danos,et al. Local and asynchronous beta-reduction (an analysis of Girard's execution formula) , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.
[7] Francesco Quaglia,et al. A parallel implementation for optimal lambda-calculus reduction , 2000, PPDP '00.
[8] Ugo Dal Lago,et al. Parallelism and Synchronization in an Infinitary Context , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.
[9] Michel Mauny,et al. The functional approach to programming , 1998 .
[10] Martín Abadi,et al. The geometry of optimal lambda reduction , 1992, POPL '92.
[11] Jan J. M. M. Rutten,et al. A tutorial on coinductive stream calculus and signal flow graphs , 2005, Theor. Comput. Sci..
[12] J. Girard. Geometry of interaction III: accommodating the additives , 1995 .
[13] Vincent Danos,et al. Proof-nets and the Hilbert space , 1995 .
[14] Andrea Asperti,et al. The bologna optimal higher-order machine , 1995, Journal of Functional Programming.
[15] Francesco Quaglia,et al. Scheduling vs Communication in PELCR , 2002, Euro-Par.
[16] Marco Solieri. Geometry of resource interaction and Taylor-Ehrhard-Regnier expansion: a minimalist approach , 2018, Math. Struct. Comput. Sci..
[17] Jan J. M. M. Rutten,et al. A coinductive calculus of streams , 2005, Mathematical Structures in Computer Science.
[18] M. Lawson. Inverse Semigroups, the Theory of Partial Symmetries , 1998 .
[19] P. J. Landin. The Mechanical Evaluation of Expressions , 1964, Comput. J..
[20] Luca Roversi,et al. Light combinators for finite fields arithmetic , 2015, Sci. Comput. Program..
[21] Vincent Danos,et al. Directed Virtual Reductions , 1996, CSL.
[22] Mario Piazza,et al. Kalmar elementary complexity and von neumann algebras , 2018 .
[23] Leslie G. Valiant,et al. A bridging model for parallel computation , 1990, CACM.
[24] Luca Roversi,et al. Typing a Core Binary-Field Arithmetic in a Light Logic , 2011, FOPARA.
[25] Vivek Sarkar,et al. X10: an object-oriented approach to non-uniform cluster computing , 2005, OOPSLA '05.
[26] Luca Roversi,et al. Can a Light Typing Discipline Be Compatible with an Efficient Implementation of Finite Fields Inversion? , 2013, FOPARA.
[27] J. Roger Hindley,et al. Introduction to combinators and λ-calculus , 1986, Acta Applicandae Mathematicae.
[28] Marco Pedicini,et al. Sequential and Parallel Abstract Machines for Optimal Reduction , 2014 .
[29] Pierre-Louis Curien,et al. An Abstract Framework for Environment Machines , 1991, Theor. Comput. Sci..
[30] Jon Fairbairn,et al. TIM: A simple, lazy abstract machine to execute supercombinatorics , 1987, FPCA.
[31] Jean-Yves Girard,et al. Geometry of interaction 2: deadlock-free algorithms , 1990, Conference on Computer Logic.
[32] Damiano Mazza,et al. Distilling abstract machines , 2014, ICFP.
[33] Andrea Asperti,et al. The optimal implementation of functional programming languages , 1998, Cambridge tracts in theoretical computer science.
[34] Ian Mackie,et al. The geometry of interaction machine , 1995, POPL '95.
[35] Jorge Sousa Pinto,et al. Parallel implementation models for the λ-calculus using the geometry of interaction , 2001 .
[36] John Lamping,et al. An algorithm for optimal lambda calculus reduction , 1989, POPL '90.