CMV: The unitary analogue of Jacobi matrices

We discuss a number of properties of CMV matrices, by which we mean the class of unitary matrices studied recently by Cantero, Moral, and Velazquez. We argue that they play an equivalent role among unitary matrices to that of Jacobi matrices among all Hermitian matrices. In particular, we describe the analogues of well-known properties of Jacobi matrices: foliation by co-adjoint orbits, a natural symplectic structure, algorithmic reduction to this shape, Lax representation for an integrable lattice system (Ablowitz-Ladik), and the relation to orthogonal polynomials. As offshoots of our analysis, we will construct action/angle variables for the finite Ablowitz-Ladik hierarchy and describe the long-time behavior of this system. © 2006 Wiley Periodicals, Inc.

[1]  I. M. Gelfand,et al.  A Family of Hamiltonian structures related to nonlinear integrable differential equations , 1995 .

[2]  Mark J. Ablowitz,et al.  Nonlinear differential−difference equations , 1975 .

[3]  Leandro Moral,et al.  Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle , 2002 .

[4]  P. Deift,et al.  Ordinary differential equations and the symmetric eigenvalue problem , 1983 .

[5]  L. Velazquez,et al.  Minimal representations of unitary operators and orthogonal polynomials on the unit circle , 2004 .

[6]  B. Kostant,et al.  The solution to a generalized Toda lattice and representation theory , 1979 .

[7]  M. Ablowitz,et al.  Nonlinear differential–difference equations and Fourier analysis , 1976 .

[8]  Barry Simon,et al.  Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.

[9]  David S. Watkins,et al.  Some Perspectives on the Eigenvalue Problem , 1993, SIAM Rev..

[10]  G. Burtless,et al.  Five Years After , 1949 .

[11]  A. Edelman,et al.  Matrix models for beta ensembles , 2002, math-ph/0206043.

[12]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[13]  Percy Deift,et al.  Integrable Hamiltonian systems , 1996 .

[14]  A. Perelomov Integrable systems of classical mechanics and Lie algebras , 1989 .

[15]  F. R. Gantmakher The Theory of Matrices , 1984 .

[16]  A. Perelomov The Toda Lattice , 1990 .

[17]  J. Moser Finitely many mass points on the line under the influence of an exponential potential -- an integrable system , 1975 .

[18]  M. Hénon,et al.  Integrals of the Toda lattice , 1974 .

[19]  Mark Adler,et al.  On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-devries type equations , 1978 .

[20]  Lax pairs for the Ablowitz-Ladik system via orthogonal polynomials on the unit circle , 2004, math-ph/0412047.

[21]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[22]  P. Forrester,et al.  Jacobians and rank 1 perturbations relating to unitary Hessenberg matrices , 2005, math/0505552.

[23]  V. Arnold,et al.  Mathematical aspects of classical and celestial mechanics , 1997 .

[24]  H. Flaschka The Toda lattice. II. Existence of integrals , 1974 .

[25]  R. Killip,et al.  Matrix models for circular ensembles , 2004, math/0410034.

[26]  Carlos Tomei,et al.  Toda flows with infinitely many variables , 1985 .

[27]  V. Arnold,et al.  Dynamical Systems III: Mathematical Aspects of Classical and Celestial Mechanics , 1989 .

[28]  Yoshimasa Nakamura,et al.  Schur flow for orthogonal polynomials on the unit circle and its integrable discretization , 2002 .

[29]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .

[30]  P. Deift,et al.  Symplectic Aspects of Some Eigenvalue Algorithms , 1993 .

[31]  Carlos Tomei,et al.  The toda flow on a generic orbit is integrable , 1986 .