CMV: The unitary analogue of Jacobi matrices
暂无分享,去创建一个
[1] I. M. Gelfand,et al. A Family of Hamiltonian structures related to nonlinear integrable differential equations , 1995 .
[2] Mark J. Ablowitz,et al. Nonlinear differential−difference equations , 1975 .
[3] Leandro Moral,et al. Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle , 2002 .
[4] P. Deift,et al. Ordinary differential equations and the symmetric eigenvalue problem , 1983 .
[5] L. Velazquez,et al. Minimal representations of unitary operators and orthogonal polynomials on the unit circle , 2004 .
[6] B. Kostant,et al. The solution to a generalized Toda lattice and representation theory , 1979 .
[7] M. Ablowitz,et al. Nonlinear differential–difference equations and Fourier analysis , 1976 .
[8] Barry Simon,et al. Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.
[9] David S. Watkins,et al. Some Perspectives on the Eigenvalue Problem , 1993, SIAM Rev..
[10] G. Burtless,et al. Five Years After , 1949 .
[11] A. Edelman,et al. Matrix models for beta ensembles , 2002, math-ph/0206043.
[12] Richard M. Wilson,et al. A course in combinatorics , 1992 .
[13] Percy Deift,et al. Integrable Hamiltonian systems , 1996 .
[14] A. Perelomov. Integrable systems of classical mechanics and Lie algebras , 1989 .
[15] F. R. Gantmakher. The Theory of Matrices , 1984 .
[16] A. Perelomov. The Toda Lattice , 1990 .
[17] J. Moser. Finitely many mass points on the line under the influence of an exponential potential -- an integrable system , 1975 .
[18] M. Hénon,et al. Integrals of the Toda lattice , 1974 .
[19] Mark Adler,et al. On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-devries type equations , 1978 .
[20] Lax pairs for the Ablowitz-Ladik system via orthogonal polynomials on the unit circle , 2004, math-ph/0412047.
[21] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[22] P. Forrester,et al. Jacobians and rank 1 perturbations relating to unitary Hessenberg matrices , 2005, math/0505552.
[23] V. Arnold,et al. Mathematical aspects of classical and celestial mechanics , 1997 .
[24] H. Flaschka. The Toda lattice. II. Existence of integrals , 1974 .
[25] R. Killip,et al. Matrix models for circular ensembles , 2004, math/0410034.
[26] Carlos Tomei,et al. Toda flows with infinitely many variables , 1985 .
[27] V. Arnold,et al. Dynamical Systems III: Mathematical Aspects of Classical and Celestial Mechanics , 1989 .
[28] Yoshimasa Nakamura,et al. Schur flow for orthogonal polynomials on the unit circle and its integrable discretization , 2002 .
[29] Alston S. Householder,et al. The Theory of Matrices in Numerical Analysis , 1964 .
[30] P. Deift,et al. Symplectic Aspects of Some Eigenvalue Algorithms , 1993 .
[31] Carlos Tomei,et al. The toda flow on a generic orbit is integrable , 1986 .