Smoothed nonparametric spectral estimation via cepsturm thresholding - Introduction of a method for smoothed nonparametric spectral estimation
暂无分享,去创建一个
[1] Donald B. Percival,et al. Spectrum estimation by wavelet thresholding of multitaper estimators , 1998, IEEE Trans. Signal Process..
[2] Hong-ye Gao. Choice of thresholds for wavelet shrinkage estimate of the spectrum , 1997 .
[3] K. L. Saxena,et al. Estimation of the Non-Centrality Parameter of a Chi Squared Distribution , 1982 .
[4] Anders Lindquist,et al. Cepstral coefficients, covariance lags, and pole-zero models for finite data strings , 2001, IEEE Trans. Signal Process..
[5] Donald B. Percival,et al. Spectral Analysis for Physical Applications , 1993 .
[6] Masanobu Taniguchi. ON ESTIMATION OF THE INTEGRALS OF CERTAIN FUNCTIONS OF SPECTRAL DENSITY , 1980 .
[7] Masanobu Taniguchi. On estimation of parameters of Gaussian stationary processes , 1979 .
[8] D. B. Preston. Spectral Analysis and Time Series , 1983 .
[9] Pierre Moulin. Wavelet thresholding techniques for power spectrum estimation , 1994, IEEE Trans. Signal Process..
[10] B. P. Bogert,et al. The quefrency analysis of time series for echoes : cepstrum, pseudo-autocovariance, cross-cepstrum and saphe cracking , 1963 .
[11] Mazin G. Rahim,et al. On second order statistics and linear estimation of cepstral coefficients , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).
[12] Chin-Hui Lee,et al. On the asymptotic statistical behavior of empirical cepstral coefficients , 1993, IEEE Trans. Signal Process..
[13] J. Markel,et al. FFT pruning , 1971 .
[14] Brett Ninness,et al. The asymptotic CRLB for the spectrum of ARMA processes , 2003, IEEE Trans. Signal Process..
[15] P. Whittle. The Analysis of Multiple Stationary Time Series , 1953 .
[16] Petre Stoica,et al. Spectral Analysis of Signals , 2009 .
[17] M.G. Bellanger,et al. Digital processing of speech signals , 1980, Proceedings of the IEEE.
[18] P. Enqvist,et al. A Convex Optimization Approach to ARMA(n, m) Model Design from Covariance and Cepstral Data , 2004, SIAM J. Control. Optim..
[19] Petre Stoica,et al. Total-Variance Reduction Via Thresholding: Application to Cepstral Analysis , 2007, IEEE Transactions on Signal Processing.
[20] Zhongjie Xie,et al. MODEL SELECTION AND ORDER DETERMINATION FOR TIME SERIES BY INFORMATION BETWEEN THE PAST AND THE FUTURE , 1996 .
[21] Adelino R. Ferreira da Silva. Wavelet denoising with evolutionary algorithms , 2005, Digit. Signal Process..
[22] P. F. Sjoholm. Statistical optimization of the log spectral density estimate , 1989, Twenty-Third Asilomar Conference on Signals, Systems and Computers, 1989..
[23] A. Kaderli,et al. Spectral estimation of ARMA processes using ARMA-cepstrum recursion , 2000, IEEE Signal Processing Letters.
[24] Victor Solo,et al. Modeling of two-dimensional random fields by parametric cepstrum , 1986, IEEE Trans. Inf. Theory.
[25] B. Ninness,et al. The Waterbed Effect in Spectral Estimation , 2004, IEEE Signal Processing Magazine.
[26] An Hongzhi,et al. Estimation of prediction error variance , 1982 .
[27] Petre Stoica,et al. On nonparametric spectral estimation , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).