Smoothed nonparametric spectral estimation via cepsturm thresholding - Introduction of a method for smoothed nonparametric spectral estimation

Cepstrum thresholding is shown to be an effective, automatic way of obtaining a smoothed nonparametric estimate of the spectrum of a stationary signal. In the process of introducing the cepstrum thresholding-based spectral estimator, we discuss a number of results on the cepstrum of a stationary signal, which might also be of interest to researchers in spectral analysis and allied topics, such as speech processing

[1]  Donald B. Percival,et al.  Spectrum estimation by wavelet thresholding of multitaper estimators , 1998, IEEE Trans. Signal Process..

[2]  Hong-ye Gao Choice of thresholds for wavelet shrinkage estimate of the spectrum , 1997 .

[3]  K. L. Saxena,et al.  Estimation of the Non-Centrality Parameter of a Chi Squared Distribution , 1982 .

[4]  Anders Lindquist,et al.  Cepstral coefficients, covariance lags, and pole-zero models for finite data strings , 2001, IEEE Trans. Signal Process..

[5]  Donald B. Percival,et al.  Spectral Analysis for Physical Applications , 1993 .

[6]  Masanobu Taniguchi ON ESTIMATION OF THE INTEGRALS OF CERTAIN FUNCTIONS OF SPECTRAL DENSITY , 1980 .

[7]  Masanobu Taniguchi On estimation of parameters of Gaussian stationary processes , 1979 .

[8]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[9]  Pierre Moulin Wavelet thresholding techniques for power spectrum estimation , 1994, IEEE Trans. Signal Process..

[10]  B. P. Bogert,et al.  The quefrency analysis of time series for echoes : cepstrum, pseudo-autocovariance, cross-cepstrum and saphe cracking , 1963 .

[11]  Mazin G. Rahim,et al.  On second order statistics and linear estimation of cepstral coefficients , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[12]  Chin-Hui Lee,et al.  On the asymptotic statistical behavior of empirical cepstral coefficients , 1993, IEEE Trans. Signal Process..

[13]  J. Markel,et al.  FFT pruning , 1971 .

[14]  Brett Ninness,et al.  The asymptotic CRLB for the spectrum of ARMA processes , 2003, IEEE Trans. Signal Process..

[15]  P. Whittle The Analysis of Multiple Stationary Time Series , 1953 .

[16]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[17]  M.G. Bellanger,et al.  Digital processing of speech signals , 1980, Proceedings of the IEEE.

[18]  P. Enqvist,et al.  A Convex Optimization Approach to ARMA(n, m) Model Design from Covariance and Cepstral Data , 2004, SIAM J. Control. Optim..

[19]  Petre Stoica,et al.  Total-Variance Reduction Via Thresholding: Application to Cepstral Analysis , 2007, IEEE Transactions on Signal Processing.

[20]  Zhongjie Xie,et al.  MODEL SELECTION AND ORDER DETERMINATION FOR TIME SERIES BY INFORMATION BETWEEN THE PAST AND THE FUTURE , 1996 .

[21]  Adelino R. Ferreira da Silva Wavelet denoising with evolutionary algorithms , 2005, Digit. Signal Process..

[22]  P. F. Sjoholm Statistical optimization of the log spectral density estimate , 1989, Twenty-Third Asilomar Conference on Signals, Systems and Computers, 1989..

[23]  A. Kaderli,et al.  Spectral estimation of ARMA processes using ARMA-cepstrum recursion , 2000, IEEE Signal Processing Letters.

[24]  Victor Solo,et al.  Modeling of two-dimensional random fields by parametric cepstrum , 1986, IEEE Trans. Inf. Theory.

[25]  B. Ninness,et al.  The Waterbed Effect in Spectral Estimation , 2004, IEEE Signal Processing Magazine.

[26]  An Hongzhi,et al.  Estimation of prediction error variance , 1982 .

[27]  Petre Stoica,et al.  On nonparametric spectral estimation , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).