Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1

[1]  Chun Jimmie Ye,et al.  Multi-context genetic modeling of transcriptional regulation resolves novel disease loci , 2021, bioRxiv.

[2]  Sina A. Gharib,et al.  Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression , 2021, Nature Genetics.

[3]  Chun Jimmie Ye,et al.  Fast and powerful statistical method for context-specific QTL mapping in multi-context genomic studies , 2021, bioRxiv.

[4]  P. Visscher,et al.  Polygenic risk score analysis for amyotrophic lateral sclerosis leveraging cognitive performance, educational attainment and schizophrenia , 2021, European Journal of Human Genetics.

[5]  Xiaoqi Li,et al.  powerEQTL: an R package and shiny application for sample size and power calculation of bulk tissue and single-cell eQTL analysis , 2020, bioRxiv.

[6]  Ashley R. Jones,et al.  Genome-wide Meta-analysis Finds the ACSL5-ZDHHC6 Locus Is Associated with ALS and Links Weight Loss to the Disease Genetics , 2020, Cell reports.

[7]  Y. Kamatani,et al.  A multi-ethnic meta-analysis identifies novel genes, including ACSL5, associated with amyotrophic lateral sclerosis , 2020, Communications Biology.

[8]  Jacob C. Ulirsch,et al.  Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases , 2020, Nature Genetics.

[9]  S. Hasnain,et al.  Novel Selenium-based compounds with therapeutic potential for SOD1-linked amyotrophic lateral sclerosis , 2020, EBioMedicine.

[10]  J. Clarimón,et al.  Motor cortex transcriptome reveals microglial key events in amyotrophic lateral sclerosis , 2020, Neurology: Neuroimmunology & Neuroinflammation.

[11]  D. Burke,et al.  A proposal for new diagnostic criteria for ALS , 2020, Clinical Neurophysiology.

[12]  P. Visscher,et al.  Significant out-of-sample classification from methylation profile scoring for amyotrophic lateral sclerosis , 2020, npj Genomic Medicine.

[13]  Gary D Bader,et al.  A reference map of the human binary protein interactome , 2020, Nature.

[14]  N. Wray,et al.  ALS in Danish Registries , 2020, Neurology: Genetics.

[15]  Danielle Posthuma,et al.  Genetic mapping of cell type specificity for complex traits , 2019, Nature Communications.

[16]  U. Roessner,et al.  Androgen receptor antagonism accelerates disease onset in the SOD1G93A mouse model of amyotrophic lateral sclerosis , 2019, British journal of pharmacology.

[17]  H. Petry,et al.  Targeting RNA-Mediated Toxicity in C9orf72 ALS and/or FTD by RNAi-Based Gene Therapy , 2019, Molecular therapy. Nucleic acids.

[18]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[19]  M. Turner,et al.  Astrocyte adenosine deaminase loss increases motor neuron toxicity in amyotrophic lateral sclerosis , 2019, Brain : a journal of neurology.

[20]  Michael S. Fernandopulle,et al.  CRISPR Interference-Based Platform for Multimodal Genetic Screens in Human iPSC-Derived Neurons , 2019, Neuron.

[21]  Annie W Shieh,et al.  Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder , 2018, Science.

[22]  Prashant S. Emani,et al.  Comprehensive functional genomic resource and integrative model for the human brain , 2018, Science.

[23]  C. Shaw,et al.  Animal models of amyotrophic lateral sclerosis: A comparison of model validity. , 2018 .

[24]  Sina A. Gharib,et al.  Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis , 2018, bioRxiv.

[25]  David Stacey,et al.  ProGeM: a framework for the prioritization of candidate causal genes at molecular quantitative trait loci , 2018, Nucleic acids research.

[26]  A. Tomkinson,et al.  Mutant FUS causes DNA ligation defects to inhibit oxidative damage repair in Amyotrophic Lateral Sclerosis , 2018, Nature Communications.

[27]  H. Okano,et al.  Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent , 2018, Nature Medicine.

[28]  Ewout J. N. Groen,et al.  Whole blood transcriptome analysis in amyotrophic lateral sclerosis: A biomarker study , 2018, PloS one.

[29]  S. Antonyuk,et al.  The cysteine-reactive small molecule ebselen facilitates effective SOD1 maturation , 2018, Nature Communications.

[30]  Eli N. Weinstein,et al.  All-Optical Electrophysiology for High-Throughput Functional Characterization of a Human iPSC-Derived Motor Neuron Model of ALS , 2018, bioRxiv.

[31]  Timothy A. Miller,et al.  Genome-wide Analyses Identify KIF5A as a Novel ALS Gene in and for Therapeutic , 2018 .

[32]  Sina A. Gharib,et al.  Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood , 2018, Nature Communications.

[33]  M. G. van der Wijst,et al.  Single-cell RNA sequencing identifies cell type-specific cis-eQTLs and co-expression QTLs , 2018, Nature Genetics.

[34]  R. Su,et al.  ABIN-1 Negatively Regulates μ-Opioid Receptor Function , 2018, Molecular Pharmacology.

[35]  Publisher's Note , 2018, Anaesthesia.

[36]  D. Posthuma,et al.  Functional mapping and annotation of genetic associations with FUMA , 2017, Nature Communications.

[37]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[38]  P. Visscher,et al.  Cross-ethnic meta-analysis identifies association of the GPX3-TNIP1 locus with amyotrophic lateral sclerosis , 2017, Nature Communications.

[39]  M. Nalls,et al.  A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci , 2017, Nature Genetics.

[40]  Ellis Patrick,et al.  An xQTL map integrates the genetic architecture of the human brain’s transcriptome and epigenome , 2017, Nature Neuroscience.

[41]  Ayako Tomizawa,et al.  Glutathione peroxidase 3 is a protective factor against acetaminophen-induced hepatotoxicity in vivo and in vitro , 2017, International journal of molecular medicine.

[42]  K. Hao,et al.  A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease , 2017, Nature Neuroscience.

[43]  Devin K. Schweppe,et al.  Architecture of the human interactome defines protein communities and disease networks , 2017, Nature.

[44]  Denis C. Bauer,et al.  Genetic correlation between amyotrophic lateral sclerosis and schizophrenia , 2017, Nature Communications.

[45]  Evan Z. Macosko,et al.  Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types , 2017, Nature Genetics.

[46]  S. Sherwin,et al.  Zebrafish Model for Functional Screening of Flow-Responsive Genes , 2016, Arteriosclerosis, thrombosis, and vascular biology.

[47]  Robert H. Brown,et al.  Decoding ALS: from genes to mechanism , 2016, Nature.

[48]  Peter W. Laird,et al.  Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes , 2016, Nucleic acids research.

[49]  Annelot M. Dekker,et al.  Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis , 2017 .

[50]  Annelot M. Dekker,et al.  NEK1 variants confer susceptibility to amyotrophic lateral sclerosis , 2016, Nature Genetics.

[51]  Benjamin A. Logsdon,et al.  Gene Expression Elucidates Functional Impact of Polygenic Risk for Schizophrenia , 2016, Nature Neuroscience.

[52]  P. Visscher,et al.  Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets , 2016, Nature Genetics.

[53]  Giulio Genovese,et al.  Schizophrenia risk from complex variation of complement component 4 , 2016, Nature.

[54]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[55]  Yakir A Reshef,et al.  Partitioning heritability by functional annotation using genome-wide association summary statistics , 2015, Nature Genetics.

[56]  T. Lehtimäki,et al.  Integrative approaches for large-scale transcriptome-wide association studies , 2015, Nature Genetics.

[57]  Christine B. Peterson,et al.  TreeQTL: hierarchical error control for eQTL findings , 2015, bioRxiv.

[58]  F. Court,et al.  Reactive oxygen species trigger motoneuron death in non-cell-autonomous models of ALS through activation of c-Abl signaling , 2015, Front. Cell. Neurosci..

[59]  Joris M. Mooij,et al.  MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..

[60]  Frank Fan,et al.  Generation and Expansion of highly-pure Motor Neuron Progenitors from Human Pluripotent Stem Cells , 2015, Nature Communications.

[61]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[62]  A. Singleton,et al.  Genetic variability in the regulation of gene expression in ten regions of the human brain , 2014, Nature Neuroscience.

[63]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[64]  C. Roncero,et al.  Antioxidant and Protective Mechanisms against Hypoxia and Hypoglycaemia in Cortical Neurons in Vitro , 2014, International journal of molecular sciences.

[65]  A. Dunning,et al.  Beyond GWASs: illuminating the dark road from association to function. , 2013, American journal of human genetics.

[66]  Owen M. Rennert,et al.  Identification of Differentially Expressed MicroRNAs Across the Developing Human Brain , 2013, Molecular Psychiatry.

[67]  A. Brice,et al.  Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis , 2013, Annals of neurology.

[68]  A. Pestronk,et al.  An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study , 2013, The Lancet Neurology.

[69]  Hitoshi Takahashi,et al.  ITIH4 and Gpx3 are potential biomarkers for amyotrophic lateral sclerosis , 2013, Journal of Neurology.

[70]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[71]  A. Goris,et al.  EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans , 2012, Nature Medicine.

[72]  P. Visscher,et al.  Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits , 2012, Nature Genetics.

[73]  R. Ophoff,et al.  Unraveling the Regulatory Mechanisms Underlying Tissue-Dependent Genetic Variation of Gene Expression , 2012, PLoS genetics.

[74]  A. Ramasamy,et al.  Quality control parameters on a large dataset of regionally dissected human control brains for whole genome expression studies , 2011, Journal of neurochemistry.

[75]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[76]  J. Loscalzo,et al.  Glutathione Peroxidase-3 Deficiency Promotes Platelet-Dependent Thrombosis In Vivo , 2011, Circulation.

[77]  M. Horne,et al.  Wnt5a Regulates Midbrain Dopaminergic Axon Growth and Guidance , 2011, PloS one.

[78]  E. Brustein,et al.  Zebrafish models for the functional genomics of neurogenetic disorders. , 2011, Biochimica et biophysica acta.

[79]  John D. Storey,et al.  Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis , 2007, PLoS genetics.

[80]  P. Shaw,et al.  Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. , 2006, Biochimica et biophysica acta.

[81]  Y. Itoyama,et al.  Redox system expression in the motor neurons in amyotrophic lateral sclerosis (ALS): immunohistochemical studies on sporadic ALS, superoxide dismutase 1 (SOD1)-mutated familial ALS, and SOD1-mutated ALS animal models , 2005, Acta Neuropathologica.

[82]  M. Lupi,et al.  Low levels of ALS-linked Cu/Zn superoxide dismutase increase the production of reactive oxygen species and cause mitochondrial damage and death in motor neuron-like cells , 2005, Journal of the Neurological Sciences.

[83]  J. Loscalzo,et al.  Determinants of Human Plasma Glutathione Peroxidase (GPx-3) Expression* , 2004, Journal of Biological Chemistry.

[84]  Michael Sendtner,et al.  Smn, the spinal muscular atrophy–determining gene product, modulates axon growth and localization of β-actin mRNA in growth cones of motoneurons , 2003, The Journal of cell biology.

[85]  M. Inouye,et al.  Acetaminophen Toxicity , 1999, The Journal of Biological Chemistry.

[86]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[87]  J. Thomson,et al.  Embryonic stem cell lines derived from human blastocysts. , 1998, Science.

[88]  J. Loscalzo,et al.  Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis. , 1996, The Journal of clinical investigation.

[89]  M Raes,et al.  Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. , 1994, Free radical biology & medicine.

[90]  A. Blann,et al.  Plasma, platelet and erythrocyte glutathione peroxidases as risk factors in ischaemic heart disease in man. , 1992, Clinical science.