Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations

AbstractWe consider a family of linearly elastic shells with thickness 2ɛ, clamped along their entire lateral face, all having the same middle surfaceS=φ(↔ω) ⊂R3, whereω ⊂R2 is a bounded and connected open set with a Lipschitz-continuous boundaryγ, andφ ∈l3 ( % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaacW% aGas--89pHjpWDaaaaaa!3C41! $$\overline \omega$$ ;R3). We make an essential geometrical assumption on the middle surfaceS, which is satisfied ifγ andφ are smooth enough andS is “uniformly elliptic”, in the sense that the two principal radii of curvature are either both>0 at all points ofS, or both<0 at all points ofS.We show that, if the applied body force density isO(1) with respect toɛ, the fieldtu(ɛ)=(ui(ɛ)), whereui(ɛ) denote the three covariant components of the displacement of the points of the shell given by the equations of three-dimensional elasticity, one “scaled” so as to be defined over the fixed domain Ω=ω×]−1, 1[, converges inH1(Ω)×H1(Ω)×L2(Ω) asɛ→0 to a limitu, which is independent of the transverse variable. Furthermore, the averageξ=1/2ε−11udx3, which belongs to the space % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmGaa8Nvam% aaBaaaleaaieGacGaxC5xtaaqabaGccaGGOaGaeqyYdCNaaiykaGqa% aiaa9bcacaqF9aGaa0hiaiaa+HeadaqhaaWcbaGaiWfA+bdaaeaacG% axa6xmaaaakiaa9bcacaqFOaGaeqyYdCNaa0xkaiaa9bcacqGHxdaT% caqFGaGaa4hsamaaDaaaleaacGaxO5hmaaqaaiacqXOFXaaaaOGaa0% hiaiaa9HcacqaHjpWDcaqFPaGaa0hiaiabgEna0kaa9bcacaGFmbWa% aWbaaSqabeaacGaAm6Nmaaaakiaa9bcacaqFOaGaeqyYdCNaa0xkai% aa9Xcaaaa!5B1E! $$V_M (\omega ) = H_0^1 (\omega ) \times H_0^1 (\omega ) \times L^2 (\omega ),$$ satisfies the (scaled) two-dimensional equations of a “membrane shell” viz., % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaiaiGaaaWaC% beaKazaaoabGaGacaaadacciqcKbaObiadaciaaama-TIiYdWcbGaG% acaaadGamaiGu+pHaqyYdChabKaGacaaadaakiacacin-ddadggadG% aGasZ-yaahaaWcbKaGasZ-yaqaiaiG08pgaiadacit-Jbaeg7aHjad% acit-Jbaek7aIjadacit-Jbaeo8aZjadacit-Jbaes8a0baakiadac% in-Zaaeo7aNnacCb+gaaWcbGaxGladacie-Zaaeo8aZjadacie-Zaa% es8a0bqajWf4aOGaiaiGC8pgaiikaGGadiadacih-Jba+z7a6jadac% ih-Jba+LcaPiadacih-Jbaeo7aNnacacih-JbaBaaaleacacih-Jba% cWaGasT-yaaHXoqycWaGasT-yaaHYoGyaeqcacih-JbaaOGaiaiGC8% pgaiikaiadacih-Jba+D7aOjadacih-Jba-LcaPiadacih-Jba-bca% Gmacacih-JbakaaabGaGaYX-yaGamaiGC8p9--xSdegaleqcacih-J% baaGqaaOGaiaiGC8pga0hiaiacacih-JbadsgacGaGaYX-yaWG5bGa% iaiGC8pga0hiaiacacih-Jba91dadGaGqDbeaeacacvcKbaObiadac% iG+Zpa-TIiYdWcbGaGqjadaci59dmaeM8a3bqajaiuaOWaiaiGO5pa% aiWaaKazaaAabGaGaIM-aaGcdGaGaIM-CfWfWaqcKbaWbeacaciA+Z% vacWaGaIM-CfWFRiI8aSqaiaiGO5pxbiadaciJ+Jta-jHiTGGaaiad% aciJ+Jta8fdaXaqaiaiGO5pxbiacacie-tuaigdaaaGccGaGaYC-Sb% WGMbWaiaiGm3pBaWbaaSqajaiGm3pBaeacaciZ9ZgacGaGaYC-SbWG% PbaaaOGaiaiGm3pBamizaiacaciZ9ZgadIhadGaGaYC-SbWgaaWcbG% aGaYC-SbGaiaiGm3pBaG4maaqajaiGm3pBaaaakiacaciA+daawUha% cGaGaIM-aaGL9baacWaGaIM-aaaH3oaAdGaGaIM-aaWgaaWcbGaGaI% M-aaGaiaiGO5paamyAaaqajaiGO5paaaGcdGaGaIM-aaGcaaqaiaiG% O5paaiacaciA+daadggaaSqajaiGO5paaaGccGaGaIM-aaqFGaGaia% iGO5paamizaiacaciA+daadMhaaaa!3D82! $$\mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \gamma _{\sigma \tau } (\zeta )\gamma _{\alpha \beta } (\eta ) \sqrt \alpha dy = \mathop \smallint \limits_\omega \left\{ {\mathop \smallint \limits_{ - 1}^1 f^i dx_3 } \right\}\eta _i \sqrt a dy$$ for allη=(ηi) εVM(ω), where % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbiGaa8xyam% acmclhaaWcbKaJWgacmcRamWiSeg7aHjadmclHYoGycWaJWs4WdmNa% mWiSes8a0baaaaa!46AB! $$a^{\alpha \beta \sigma \tau }$$ are the components of the two-dimensional elasticity tensor of the surfaceS, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS% baaSqaaiabeg7aHjabek7aIbqabaGccaGGOaGaeq4TdGMaaiykaiab% g2da9maalaaajqgaG9FaaiacaskIXaaabaGaiaiGaaaC-JOmaaaakm% aabmaabaGaeyOaIy7aaSbaaSqaaiadObfHXoqycWaAqr4TdGMamGgu% ek7aIbqabaGccqGHRaWkcqGHciITdaWgaaWcbaGamqhxek7aIjad0X% fH3oaAcWaDCrySdegabeaaaOGaayjkaiaawMcaaiabgkHiTGGaciab% -n5ahnaaDaaaleaacWarCrySdeMamqexek7aIbqaaiabeo8aZbaaki% abeE7aOnaaBaaaleaacWaJms4WdmhabeaakiabgkHiTiaadkgadaWg% aaWcbaGamWiAeg7aHjadmIgHYoGycWaJOr4TdGMaiWiAiodaaeqaaa% aa!739B! $$\gamma _{\alpha \beta } (\eta ) = \frac{1}{2}\left( {\partial _{\alpha \eta \beta } + \partial _{\beta \eta \alpha } } \right) - \Gamma _{\alpha \beta }^\sigma \eta _\sigma - b_{\alpha \beta \eta 3} $$ are the components of the linearized change of metric tensor ofS, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacciGae83KdC% 0aa0baaSqaaiadSaiHXoqycWalasOSdigabaGaeq4Wdmhaaaaa!3DF3! $$\Gamma _{\alpha \beta }^\sigma$$ are the Christoffel symbols ofS, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa% aaleaacWaMCrySdeMamGjxek7aIbqabaaaaa!3C38! $$b_{\alpha \beta }$$ are the components of the curvature tensor ofS, andfi are the scaled components of the applied body force. Under the above assumptions, the two-dimensional equations of a “membrane shell” are therefore justified.