MONTE: A Program to Simulate the Heterojunction Devices in Two Dimensions

This paper describes the two-dimensional heterojunction device simulator MONTE. Drift-diffusion forms the basis for the transport of electrons and holes. Finite differences and Gummel's algorithm have been adopted to solve the coupled equations. Internal electrodes, capping dielectrics, recessed gates, Fermi-level pinning at the device surface, and deep traps in the substrate can all be treated. A heuristic approach has been devised for evaluating the mobility of electrons based on the quasi-Fermi level. Artifacts such as carrier heating in the built-in field are eliminated, but the model does underestimate electron mobility wherever overshoot occurs. Examples of simulation results on Fermi-level pinning, heterojunction Schottky diodes, a recessed gate MODFET, and a GaAs gate heterojunction FET will be presented.

[1]  T. Morie,et al.  A submicrometer megabit DRAM process technology using trench capacitors , 1985 .

[2]  C.P. Lee,et al.  IIA-7 ultra high speed integrated circuits using GaAs/GaAlAs high electron mobility transistors , 1983, IEEE Transactions on Electron Devices.

[3]  E. M. Buturla,et al.  Finite-element analysis of semiconductor devices: the FIELDAY program , 1981 .

[4]  J. Freeouf,et al.  Nonuniform surface potentials and their observation by surface sensitive techniques , 1984 .

[5]  K. Hess,et al.  Investigation of transient electronic transport in GaAs following high energy injection , 1982, IEEE Transactions on Electron Devices.

[6]  J.R. Hauser,et al.  A computer analysis of heterojunction and graded composition solar cells , 1977, IEEE Transactions on Electron Devices.

[7]  J.Y.-F. Tang,et al.  Two-dimensional simulation of MODFET and GaAs gate heterojunction FET's , 1985, IEEE Transactions on Electron Devices.

[8]  M. Laviron,et al.  High speed-low power GaAs/AlGaAs TEGFET integrated circuit , 1982, 1982 International Electron Devices Meeting.

[9]  Edward M. Buturla,et al.  Animation and 3D Color Display of Multiple-Variable Data: Application to Semiconductor Design , 1985, IBM J. Res. Dev..

[10]  J.C.M. Hwang,et al.  Material and device considerations for selectively doped heterojunction transistors , 1982, 1982 International Electron Devices Meeting.

[11]  F. Serra-Mestres,et al.  A generalized approximation of the Fermi–Dirac integrals , 1983 .

[12]  K. Hess,et al.  Phenomenological Physics of Hot Carriers in Semiconductors , 1980 .

[13]  T. H. Windhorn,et al.  High field temperature dependent electron drift velocities in GaAs , 1982 .

[14]  P. Solomon,et al.  A GaAs gate heterojunction FET , 1984, IEEE Electron Device Letters.

[15]  Masayuki Abe,et al.  High Electron Mobility Transistor Logic , 1981 .

[16]  H. L. Stone ITERATIVE SOLUTION OF IMPLICIT APPROXIMATIONS OF MULTIDIMENSIONAL PARTIAL DIFFERENTIAL EQUATIONS , 1968 .

[17]  W. Mönch,et al.  On the chemisorption of Ge on GaAs(110) surfaces: UPS and work function measurements , 1982 .

[18]  H. Gummel A self-consistent iterative scheme for one-dimensional steady state transistor calculations , 1964 .

[19]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .

[20]  I. Lindau,et al.  Unified defect model and beyond , 1980 .