Geodynamics from the analysis of the mean orbital motion of geodetic satellites
暂无分享,去创建一个
Pierre Exertier | Gilles Métris | Sean L. Bruinsma | Francois Barlier | S. Bruinsma | P. Exertier | F. Barlier | G. Métris | Y. Boudon | Y. Boudon
[1] W. M. Kaula. Theory of satellite geodesy , 1966 .
[2] Mean elements of GEOS 1 and GEOS 2 , 1973 .
[3] D. E. Cartwright,et al. Corrected Tables of Tidal Harmonics , 1973 .
[4] E. W. Schwiderski. Ocean Tides. Part 1. Global Ocean Tidal Equations , 1980 .
[5] John M. Wahr,et al. Body tides on an elliptical, rotating, elastic and oceanless earth , 1981 .
[6] A. Hedin. MSIS‐86 Thermospheric Model , 1987 .
[7] B. Chao,et al. Global surface-water-induced seasonal variations in the earth's rotation and gravitational field , 1988 .
[8] John M. Wahr,et al. Spectroscopic Analysis of Global Tide Gauge Sea Level Data , 1990 .
[9] Remko Scharroo,et al. On the along-track acceleration of the LAGEOS satellite , 1991 .
[10] N. K. Pavlis,et al. Temporal variations of the Earth's gravitational field from satellite laser ranging to LAGEOS , 1993 .
[11] P. Exertier,et al. Long period variations of the motion of a satellite due to non-resonant tesseral harmonics of a gravity potential , 1993 .
[12] A. Cazenave,et al. Temporal Variations of the Earth Gravity Field For 1985–1989 Derived From Lageos , 1993 .
[13] V. Slabinski. A numerical solution for lageos thermal thrust: The rapid-spin case , 1994 .
[14] Pierre Exertier,et al. Semi-analytical theory of the mean orbital motion. , 1995 .
[15] B. Chao,et al. Global gravitational changes due to atmospheric mass redistribution as observed by the Lageos nodal residual , 1995 .
[16] A. Cazenave,et al. Temporal Variations of the Gravity Field from Lageos 1 and Lageos 2 Observations , 1996 .
[17] Anny Cazenave,et al. Global Gravity Field and Its Temporal Variations , 1996 .
[18] G. W. Davis,et al. The Joint Gravity Model 3 , 1996 .
[19] D. Dong,et al. Seasonal Variations of the Earth's Gravitational Field: An Analysis of Atmospheric Pressure, Ocean Tidal, and Surface Water Excitation , 1996 .
[20] R. Nerem,et al. Secular Variations of the Zonal Harmonics and Polar Motion as Geophysical Constraints , 1996 .
[21] F. Barlier,et al. The rotation of LAGEOS and its long‐term semimajor axis decay: A self‐consistent solution , 1996 .
[22] S. Bettadpur,et al. Temporal Variability of Earth’s Gravitational Field from Satellite Laser Ranging , 1996 .
[23] B. Chao,et al. Long-period variations in gravity field caused by mantle anelasticity , 1996 .
[24] John C. Ries,et al. Nongravitational effects and the LAGEOS eccentricity excitations , 1997 .
[25] S. Bruinsma,et al. Mean Orbital Motion of Geodetic Satellites and its Applications , 1997 .
[26] S. Bruinsma,et al. Semi-analytical theory of mean orbital motion: A new tool for computing ephemerides , 1997 .
[27] Jean-Charles Marty,et al. Long-wavelength global gravity field models: GRIM4-S4, GRIM4-C4 , 1997 .
[28] Byron D. Tapley,et al. Determination of long-term changes in the Earth's gravity field from satellite laser ranging observations , 1997 .
[29] N. K. Pavlis,et al. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96 , 1998 .
[30] R. Biancale,et al. Improvement of the empirical thermospheric model DTM: DTM94 – a comparative review of various temporal variations and prospects in space geodesy applications , 1998 .
[31] Byron D. Tapley,et al. Seasonal variations in low degree zonal harmonics of the Earth's gravity field from satellite laser ranging observations , 1999 .