Direct force measurements on DNA in a solid-state nanopore

[1]  U. Keyser,et al.  Nanopore tomography of a laser focus. , 2005, Nano letters.

[2]  Aleksei Aksimentiev,et al.  Stretching DNA using the electric field in a synthetic nanopore. , 2005, Nano letters.

[3]  Chuen Ho,et al.  Electrolytic transport through a synthetic nanometer-diameter pore. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  K. Neuman,et al.  Measurement of the effective focal shift in an optical trap. , 2005, Optics letters.

[5]  K. Schulten,et al.  Sizing DNA using a nanometer-diameter pore. , 2004, Biophysical journal.

[6]  Peng Chen,et al.  Atomic Layer Deposition to Fine-Tune the Surface Properties and Diameters of Fabricated Nanopores. , 2004, Nano letters.

[7]  J. Joanny,et al.  Fast DNA translocation through a solid-state nanopore. , 2004, Nano letters.

[8]  Marc Gershow,et al.  DNA molecules and configurations in a solid-state nanopore microscope , 2003, Nature materials.

[9]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.

[10]  Michelle D. Wang,et al.  Dynamic force spectroscopy of protein-DNA interactions by unzipping DNA. , 2003, Physical review letters.

[11]  E. Stellwagen,et al.  Probing the electrostatic shielding of DNA with capillary electrophoresis. , 2003, Biophysical journal.

[12]  C. Bustamante,et al.  Ten years of tension: single-molecule DNA mechanics , 2003, Nature.

[13]  Michael J. Aziz,et al.  Ion-beam sculpting at nanometre length scales , 2001, Nature.

[14]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[15]  D. Branton,et al.  Rapid nanopore discrimination between single polynucleotide molecules. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[16]  G. Dreyfuss,et al.  Transport of Proteins and RNAs in and out of the Nucleus , 1999, Cell.

[17]  D. Branton,et al.  Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. , 1999, Biophysical journal.

[18]  D. Lubensky,et al.  Driven polymer translocation through a narrow pore. , 1999, Biophysical journal.

[19]  S. Smith,et al.  Trapping of megabase-sized DNA molecules during agarose gel electrophoresis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Gustavo Stolovitzky,et al.  Backscattering from a tethered bead as a probe of DNA flexibility , 1998 .

[21]  J. Chaires,et al.  Insights from a new analytical electrophoresis apparatus. , 1996, Journal of pharmaceutical sciences.

[22]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[23]  D. Long,et al.  Simultaneous action of electric fields and nonelectric forces on a polyelectrolyte: Motion and deformation. , 1996, Physical review letters.

[24]  A. Bensimon,et al.  The Elasticity of a Single Supercoiled DNA Molecule , 1996, Science.

[25]  Steven B. Smith,et al.  Electrophoretic charge density and persistence length of DNA as measured by fluorescence microscopy , 1990, Biopolymers.

[26]  G. S. Manning The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides , 1978, Quarterly Reviews of Biophysics.

[27]  J. Schellman,et al.  Electrical double layer, zeta potential, and electrophoretic charge of double‐stranded DNA , 1977, Biopolymers.

[28]  U. Keyser,et al.  Salt dependence of ion transport and DNA translocation through solid-state nanopores. , 2006, Nano letters.

[29]  R. Stojanović Motion and Deformation , 1970 .