Wide Bandgap Semiconductor-Based Surface-Emitting Lasers: Recent Progress in GaN-Based Vertical Cavity Surface-Emitting Lasers and GaN-/ZnO-Based Polariton Lasers

With edge-emitting GaN-based lasers in commercial systems, attention is shifting to more demanding and rewarding emitters. These encompass microcavity (MC)-based vertical cavity surface-emitting lasers (VCSELs) and polariton lasers. The impetus centers on applications such as high-speed/high-resolution laser printing/scanning technology, lighting, and new types of coherent but nearly thresholdless optical sources. Room-temperature operations of GaN-based VCSELs by electrical injection have been recently reported, and the research on GaN-based VCSELs is segueing into new opportunities such as polariton-based lasers. While still in its infancy, polariton lasing in GaN-based MCs at room temperature has been observed. Observation of spontaneous emission buildup in polariton lasing emission is attributed to a Bose-Einstein condensate of cavity polaritons. However, the realization of a polariton laser by electrical injection is still being pursued. In this paper, we discuss the recent progress in wide-bandgap semiconductor-based VCSELs and GaN-/ZnO-based polariton lasers.

[1]  H. Morkoç,et al.  Cavity polaritons in ZnO-based hybrid microcavities , 2008 .

[2]  C. Weisbuch,et al.  Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. , 1992, Physical review letters.

[3]  A. Kavokin,et al.  ZnO as a material mostly adapted for the realization of room-temperature polariton lasers , 2002 .

[4]  M. Nakayama,et al.  Observation of Exciton Polaritons in a ZnO Microcavity with HfO2/SiO2 Distributed Bragg Reflectors , 2008 .

[5]  M. S. Skolnick,et al.  Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities , 2008 .

[6]  Tae-Seok Lee,et al.  Excitonic ultraviolet lasing in ZnO-based light emitting devices , 2007 .

[7]  H. Ohno,et al.  Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO , 2004 .

[8]  Jeremy J. Baumberg,et al.  Relaxation bottleneck and its suppression in semiconductor microcavities , 2000 .

[9]  J. Carlin,et al.  Room-temperature polariton luminescence from a bulk GaN microcavity , 2006 .

[10]  Catalano,et al.  Room temperature lasing at blue wavelengths in gallium nitride microcavities , 1999, Science.

[11]  Jeremy J. Baumberg,et al.  Room-temperature polariton lasers based on GaN microcavities , 2002 .

[12]  F. Kish,et al.  A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser , 2000 .

[13]  Tao Wang,et al.  GaN hybrid microcavities in the strong coupling regime grown by metal-organic chemical vapor deposition on sapphire substrates , 2007 .

[14]  A. Castiglia,et al.  Large vacuum Rabi splitting in a multiple quantum well GaN-based microcavity in the strong-coupling regime , 2008 .

[15]  Eric Feltin,et al.  Efficient current injection scheme for nitride vertical cavity surface emitting lasers , 2007 .

[16]  H. Kuo,et al.  Crack-free GaN∕AlN distributed Bragg reflectors incorporated with GaN∕AlN superlattices grown by metalorganic chemical vapor deposition , 2006 .

[17]  F. Kish,et al.  A VERTICAL CAVITY LIGHT EMITTING INGAN QUANTUM WELL HETEROSTRUCTURE , 1999 .

[18]  M. Grundmann,et al.  Exciton–polariton formation at room temperature in a planar ZnO resonator structure , 2008 .

[19]  Takeshi Kamiya,et al.  Lasing Emission from an In_ Ga_ N Vertical Cavity Surface Emitting Laser , 1998 .

[20]  Fabrice Semond,et al.  Strong coupling of light with A and B excitons in GaN microcavities grown on silicon , 2006 .

[21]  J. Bloch,et al.  High-temperature ultrafast polariton parametric amplification in semiconductor microcavities , 2001, Nature.

[22]  Eric Feltin,et al.  Room temperature polariton lasing in a GaN∕AlGaN multiple quantum well microcavity , 2008 .

[23]  H. Kuo,et al.  CW lasing of current injection blue GaN-based vertical cavity surface emitting laser , 2008 .

[24]  A. Nurmikko,et al.  Near ultraviolet optically pumped vertical cavity laser , 2000 .

[25]  Takeshi Kamiya,et al.  Lasing Emission from an In0.1Ga0.9N Vertical Cavity Surface Emitting Laser , 1998 .

[26]  A. Uedono,et al.  Exciton–polariton spectra and limiting factors for the room-temperature photoluminescence efficiency in ZnO , 2005 .

[27]  T. Mukai,et al.  Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection , 2008 .

[28]  Tien-Chang Lu,et al.  Large vacuum Rabi splitting in ZnO-based hybrid microcavities observed at room temperature , 2009 .

[29]  Cristiano Ciuti,et al.  Theory of the angle-resonant polariton amplifier , 2000 .

[30]  J. Baumberg,et al.  Spontaneous polarization buildup in a room-temperature polariton laser. , 2008, Physical review letters.

[31]  Hadis Morko,et al.  Handbook of Nitride Semiconductors and Devices , 2008 .

[32]  P. Lefebvre,et al.  Comparison of strong coupling regimes in bulk GaAs, GaN and ZnO semiconductor microcavities , 2008, 0810.1811.

[33]  M. S. Skolnick,et al.  Strong coupling phenomena in quantum microcavity structures , 1998 .

[34]  H. Morkoç,et al.  GaN, AlN, and InN: A review , 1992 .

[35]  Marc Ilegems,et al.  Lattice-matched distributed Bragg reflectors for nitride-based vertical cavity surface emitting lasers , 2005 .

[36]  Machida,et al.  Microcavity semiconductor laser with enhanced spontaneous emission. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[37]  Eric Feltin,et al.  Impact of inhomogeneous excitonic broadening on the strong exciton-photon coupling in quantum well nitride microcavities , 2006 .

[38]  Shuji Nakamura,et al.  The blue laser diode-the complete story , 2000 .

[39]  J. Massies,et al.  Observation of Rabi splitting in a bulk GaN microcavity grown on silicon , 2003 .

[40]  D. Solnyshkov,et al.  Theory of exciton-polariton lasing at room temperature in ZnO microcavities , 2008 .

[41]  J. Carlin,et al.  Room temperature polariton luminescence from a GaN/AlGaN quantum well microcavity , 2006 .

[42]  Sophie Bouchoule,et al.  Polariton light-emitting diode in a GaAs-based microcavity , 2008 .

[43]  P. Lagoudakis,et al.  Room-temperature polariton lasing in semiconductor microcavities. , 2007, Physical review letters.

[44]  Marc Ilegems,et al.  Recent Progress in the Growth of Highly Reflective Nitride-Based Distributed Bragg Reflectors and Their Use in Microcavities , 2005 .

[45]  H. Gotoh,et al.  Low-threshold lasing of InGaN vertical-cavity surface-emitting lasers with dielectric distributed Bragg reflectors , 2003 .

[46]  Fabrice Semond,et al.  Polariton emission and reflectivity in GaN microcavities as a function of angle and temperature , 2006 .

[47]  T Tawara,et al.  Cavity polaritons in InGaN microcavities at room temperature. , 2004, Physical review letters.

[48]  Jean-François Carlin,et al.  Room temperature polariton lasing in III-nitride microcavities: a comparison with blue GaN-based vertical cavity surface emitting lasers , 2009, OPTO.

[49]  Pavlos G. Savvidis,et al.  Room temperature GaAs exciton-polariton light emitting diode , 2009 .

[50]  P. Lagoudakis,et al.  Blue lasing at room temperature in an optically pumped lattice-matched AlInN=GaN VCSEL structure , 2007 .

[51]  Takahiro Koyama,et al.  Dielectric SiO2∕ZrO2 distributed Bragg reflectors for ZnO microcavities prepared by the reactive helicon-wave-excited-plasma sputtering method , 2006 .

[52]  Yasuhiko Arakawa,et al.  Observation of enhanced spontaneous emission coupling factor in nitride-based vertical-cavity surface-emitting laser , 2002 .