Search for Resonant T[bar over T] Production in Proton- Proton Collisions at S = 8 Tev Accessed Terms of Use

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Search for resonant t ¯ t production in proton-proton collisions at ffiffi s p ¼ 8 TeV V. Khachatryan et al. A search is performed for the production of heavy resonances decaying into top-antitop quark pairs in proton-proton collisions at ffiffi ffi s p ¼ 8 TeV. Data used for the analyses were collected with the CMS detector and correspond to an integrated luminosity of 19.7 fb −1. The search is performed using events with three different final states, defined by the number of leptons (electrons and muons) from the t ¯ t → WbWb decay. The analyses are optimized for reconstruction of top quarks with high Lorentz boosts, where jet substructure techniques are used to enhance the sensitivity. Results are presented for all channels and a combination is performed. No significant excess of events relative to the expected yield from standard model processes is observed. Upper limits on the production cross section of heavy resonances decaying to t ¯ t are calculated. A narrow leptophobic topcolor Z 0 resonance with a mass below 2.4 TeV is excluded at 95% confidence level. Limits are also derived for a broad Z 0 resonance with a 10% width relative to the resonance mass, and a Kaluza-Klein excitation of the gluon in the Randall-Sundrum model. These are the most stringent limits to date on heavy resonances decaying into top-antitop quark pairs.

[1]  S. M. Etesami,et al.  Search for vector-like T quarks decaying to top quarks and Higgs bosons in the all-hadronic channel using jet substructure , 2015 .

[2]  C. Collaboration,et al.  Description and performance of track and primary-vertex reconstruction with the CMS tracker , 2014, 1405.6569.

[3]  G. Bruno,et al.  Identification of b-quark jets with the CMS experiment , 2013 .

[4]  A. Mitov,et al.  Total top-quark pair-production cross section at hadron colliders through O(αS(4)). , 2013, Physical review letters.

[5]  N. Kidonakis,et al.  NNLL threshold resummation for top-pair and single-top production , 2012, Physics of Particles and Nuclei.

[6]  Frank Petriello,et al.  Combining QCD and electroweak corrections to dilepton production in the framework of the FEWZ simulation code , 2012, 1208.5967.

[7]  J. Thaler,et al.  Maximizing boosted top identification by minimizing N-subjettiness , 2011, Journal of High Energy Physics.

[8]  C. Collaboration,et al.  Determination of Jet Energy Calibration and Transverse Momentum Resolution in CMS , 2011, 1107.4277.

[9]  C. Collaboration,et al.  Missing transverse energy performance of the CMS detector , 2011, Journal of Instrumentation.

[10]  F. Maltoni,et al.  MadGraph 5: going beyond , 2011, 1106.0522.

[11]  J. Campbell,et al.  Vector boson pair production at the LHC , 2011, 1105.0020.

[12]  J. Thaler,et al.  Identifying boosted objects with N-subjettiness , 2010, 1011.2268.

[13]  R. Field Early LHC Underlying Event Data - Findings and Surprises , 2010, 1010.3558.

[14]  J. Huston,et al.  New parton distributions for collider physics , 2010, 1007.2241.

[15]  Tilman Plehn,et al.  Stop reconstruction with tagged tops , 2010, 1006.2833.

[16]  Jun Gao,et al.  Next-to-leading order QCD corrections to a heavy resonance production and decay into top quark pair at the LHC , 2010, 1004.0876.

[17]  E. Re,et al.  A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX , 2010, 1002.2581.

[18]  M. Cacciari,et al.  The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.

[19]  M. Cacciari,et al.  The Catchment Area of Jets , 2008, 0802.1188.

[20]  J. Huston,et al.  Implications of CTEQ global analysis for collider observables , 2008, 0802.0007.

[21]  P. Nason,et al.  Matching NLO QCD computations with Parton Shower simulations: the POWHEG method , 2007, 0709.2092.

[22]  Tim Stelzer,et al.  MadGraph/MadEvent v4: The New Web Generation , 2007, 0706.2334.

[23]  Ritesh K. Singh,et al.  Top production at the Tevatron/LHC and nonstandard, strongly interacting spin one particles , 2007, 0705.1499.

[24]  J. Virzi,et al.  LHC Signals from Warped Extra Dimensions , 2006 .

[25]  M. Mangano,et al.  Matching matrix elements and shower evolution for top-pair production in hadronic collisions , 2006, hep-ph/0611129.

[26]  S. Mrenna,et al.  PYTHIA 6.4 Physics and Manual , 2006, hep-ph/0603175.

[27]  P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms , 2004, hep-ph/0409146.

[28]  J. Huston,et al.  New generation of parton distributions with uncertainties from global QCD analysis , 2002, hep-ph/0201195.

[29]  Rizzo,et al.  Phenomenology of the randall-sundrum gauge hierarchy model , 2000, Physical review letters.

[30]  L. Randall,et al.  A Large mass hierarchy from a small extra dimension , 1999, hep-ph/9905221.

[31]  T. Wengler,et al.  Hadronization Corrections to Jet Cross Sections in Deep-Inelastic Scattering , 1998, hep-ph/9907280.

[32]  S. Willenbrock,et al.  Higgs decay to top quarks at hadron colliders , 1994, hep-ph/9404359.

[33]  Paul H. Frampton,et al.  Chiral color: An alternative to the standard model☆ , 1987 .

[34]  Òscar Bartolomé Mateu Six sigma methodology and its application in analysis of students’ academic performance at Faculty Of Electrical Engineering, Mechanical Engineering And Naval Architecture , 2013 .

[35]  Departamento De Computación,et al.  CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS DEL IPN , 2012 .

[36]  David E Kaplan,et al.  Top-Tagging: A Method for Identifying Boosted Hadronic Tops , 2008 .

[37]  J. Butterworth,et al.  Ju n 20 08 Jet substructure as a new Higgs search channel at the LHC , 2008 .

[38]  J Wang,et al.  The CMS experiment at the CERN LHC , 2008 .

[39]  Preprint typeset in JHEP style.- PAPER VERSION Cavendish–HEP–97/06 , 1997 .

[40]  A. Agafonov,et al.  P. N. Lebedev Physical Inetitute , 1989 .

[41]  S. Bartolomé-Jiménez,et al.  European Organization for Nuclear Research , 1954, Nature.