Discrete variations of the fractional Brownian motion in the presence of outliers and an additive noise

This paper gives an overview of the problem of estimating the Hurst parameter of a fractional Brownian motion when the data are observed with outliers and/or with an additive noise by using methods based on discrete variations. We show that the classical estimation procedure based on the log-linearity of the variogram of dilated series is made more robust to outliers and/or an additive noise by considering sample quantiles and trimmed means of the squared series or differences of empirical variances. These different procedures are compared and discussed through a large simulation study and are implemented in the \texttt{R} package \texttt{dvfBm}.

[1]  Eric Moulines,et al.  Estimators of Long-Memory: Fourier versus Wavelets , 2008, 0801.4329.

[2]  Murad S. Taqqu,et al.  Theory and applications of long-range dependence , 2003 .

[3]  J. Coeurjolly,et al.  Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths , 2001 .

[4]  Hermine Bierm'e,et al.  Estimation of anisotropic Gaussian fields through Radon transform , 2006, math/0602663.

[5]  John T. Kent,et al.  Estimating the Fractal Dimension of a Locally Self-similar Gaussian Process by using Increments , 1997 .

[6]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[7]  Jean-François Coeurjolly,et al.  Identification of multifractional Brownian motion , 2005 .

[8]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[9]  J. Coeurjolly,et al.  HURST EXPONENT ESTIMATION OF LOCALLY SELF-SIMILAR GAUSSIAN PROCESSES USING SAMPLE QUANTILES , 2005, math/0506290.

[10]  Süleyman Baykut,et al.  Estimation of Spectral Exponent Parameter of Process in Additive White Background Noise , 2007, EURASIP J. Adv. Signal Process..

[11]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[12]  Gabriel Lang,et al.  Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .

[13]  A. Wood,et al.  Estimation of fractal dimension for a class of non-Gaussian stationary processes and fields , 2004, math/0406525.

[14]  J. Coeurjolly,et al.  Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study , 2000 .

[15]  J. Doob Stochastic processes , 1953 .

[16]  Zhengyuan Zhu,et al.  Robust estimation of the self-similarity parameter in network traffic using wavelet transform , 2007, Signal Process..

[17]  Sophie Lambert-Lacroix,et al.  On Fractional Gaussian Random Fields Simulations , 2007 .

[18]  Quadratic variations of spherical fractional Brownian motions , 2007 .

[19]  Michael R. Chernick,et al.  Wavelet Methods for Time Series Analysis , 2001, Technometrics.