Discrete variations of the fractional Brownian motion in the presence of outliers and an additive noise
暂无分享,去创建一个
[1] Eric Moulines,et al. Estimators of Long-Memory: Fourier versus Wavelets , 2008, 0801.4329.
[2] Murad S. Taqqu,et al. Theory and applications of long-range dependence , 2003 .
[3] J. Coeurjolly,et al. Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths , 2001 .
[4] Hermine Bierm'e,et al. Estimation of anisotropic Gaussian fields through Radon transform , 2006, math/0602663.
[5] John T. Kent,et al. Estimating the Fractal Dimension of a Locally Self-similar Gaussian Process by using Increments , 1997 .
[6] B. Mandelbrot,et al. Fractional Brownian Motions, Fractional Noises and Applications , 1968 .
[7] Jean-François Coeurjolly,et al. Identification of multifractional Brownian motion , 2005 .
[8] Jan Beran,et al. Statistics for long-memory processes , 1994 .
[9] J. Coeurjolly,et al. HURST EXPONENT ESTIMATION OF LOCALLY SELF-SIMILAR GAUSSIAN PROCESSES USING SAMPLE QUANTILES , 2005, math/0506290.
[10] Süleyman Baykut,et al. Estimation of Spectral Exponent Parameter of Process in Additive White Background Noise , 2007, EURASIP J. Adv. Signal Process..
[11] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[12] Gabriel Lang,et al. Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .
[13] A. Wood,et al. Estimation of fractal dimension for a class of non-Gaussian stationary processes and fields , 2004, math/0406525.
[14] J. Coeurjolly,et al. Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study , 2000 .
[15] J. Doob. Stochastic processes , 1953 .
[16] Zhengyuan Zhu,et al. Robust estimation of the self-similarity parameter in network traffic using wavelet transform , 2007, Signal Process..
[17] Sophie Lambert-Lacroix,et al. On Fractional Gaussian Random Fields Simulations , 2007 .
[18] Quadratic variations of spherical fractional Brownian motions , 2007 .
[19] Michael R. Chernick,et al. Wavelet Methods for Time Series Analysis , 2001, Technometrics.