Systematic KMTNet Planetary Anomaly Search. VIII. Complete Sample of 2019 Subprime Field Planets

We complete the publication of all microlensing planets (and “possible planets”) identified by the uniform approach of the KMT AnomalyFinder system in the 21 KMT subprime fields during the 2019 observing season, namely, KMT-2019-BLG-0298, KMT-2019-BLG-1216, KMT-2019-BLG-2783, OGLE-2019-BLG-0249, and OGLE-2019-BLG-0679 (planets), as well as OGLE-2019-BLG-0344 and KMT-2019-BLG-0304 (possible planets). The five planets have mean log mass ratio measurements of (−2.6, −3.6, −2.5, −2.2, −2.3), median mass estimates of (1.81, 0.094, 1.16, 7.12, 3.34) M Jup, and median distance estimates of (6.7, 2.7, 5.9, 6.4, 5.6) kpc, respectively. The main scientific interest of these planets is that they complete the AnomalyFinder sample for 2019, which has a total of 25 planets that are likely to enter the statistical sample. We find statistical consistency with the previously published 33 planets from the 2018 AnomalyFinder analysis according to an ensemble of five tests. Of the 58 planets from 2018–2019, 23 were newly discovered by AnomalyFinder. Within statistical precision, half of the planets have caustic crossings, while half do not; an equal number of detected planets result from major- and minor-image light-curve perturbations; and an equal number come from KMT prime fields versus subprime fields.

[1]  D. Bennett,et al.  Mass Production of 2021 KMTNet Microlensing Planets. III. Analysis of Three Giant Planets , 2022, The Astronomical Journal.

[2]  R. Poleski,et al.  Systematic KMTNet Planetary Anomaly Search. VII. Complete Sample of q < 10−4 Planets from the First 4 yr Survey , 2022, The Astronomical Journal.

[3]  R. Pogge,et al.  KMT-2017-BLG-0673Lb and KMT-2019-BLG-0414Lb: Two microlensing planets detected in peripheral fields of KMTNet survey , 2022, Astronomy &amp; Astrophysics.

[4]  R. Pogge,et al.  Mass Production of 2021 KMTNet Microlensing Planets II , 2022, The Astronomical Journal.

[5]  K. Ulaczyk,et al.  Systematic KMTNet Planetary Anomaly Search. VI. Complete Sample of 2018 Sub-prime-field Planets , 2022, The Astronomical Journal.

[6]  R. Poleski,et al.  OGLE-2019-BLG-1470LABc: Another Microlensing Giant Planet in a Binary System? , 2022, Monthly Notices of the Royal Astronomical Society.

[7]  M. Penny,et al.  Systematic KMTNet Planetary Anomaly Search. V. Complete Sample of 2018 Prime-Field , 2022, 2204.04354.

[8]  R. Poleski,et al.  Systematic KMTNet Planetary Anomaly Search. IV. Complete Sample of 2019 Prime-Field , 2022, Monthly Notices of the Royal Astronomical Society.

[9]  R. Pogge,et al.  Mass Production of 2021 KMTNet Microlensing Planets. I , 2022, The Astronomical Journal.

[10]  R. Poleski,et al.  Systematic KMTNet planetary anomaly search, paper III: One wide-orbit planet and two stellar binaries , 2021, Monthly Notices of the Royal Astronomical Society.

[11]  J. Bloom,et al.  A ubiquitous unifying degeneracy in two-body microlensing systems , 2021, Nature Astronomy.

[12]  R. Poleski,et al.  OGLE-2019-BLG-0468Lb,c: two microlensing giant planets around a G-type star , 2021, Astronomy & Astrophysics.

[13]  R. Poleski,et al.  Three faint-source microlensing planets detected via the resonant-caustic channel , 2021, Astronomy & Astrophysics.

[14]  M. Penny,et al.  Systematic KMTNet Planetary Anomaly Search. II. Six New q < 2 × 10−4 Mass-ratio Planets , 2021, The Astronomical Journal.

[15]  Man Cheung Alex Li,et al.  Systematic KMTNet Planetary Anomaly Search. I. OGLE-2019-BLG-1053Lb, a Buried Terrestrial Planet , 2021, The Astronomical Journal.

[16]  H. Rix,et al.  A classifier for spurious astrometric solutions in Gaia EDR3 , 2021, 2101.11641.

[17]  Stela Ishitani Silva,et al.  OGLE-2019-BLG-0960 Lb: the Smallest Microlensing Planet , 2021, The Astronomical Journal.

[18]  A. Gould,et al.  Masses for free-floating planets and dwarf planets , 2020, Research in Astronomy and Astrophysics.

[19]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[20]  C. H. Ling,et al.  The lowest mass ratio planetary microlens: OGLE 2016–BLG–1195Lb , 2017, 1703.08639.

[21]  G. Bryden,et al.  An Earth-mass Planet in a 1 au Orbit around an Ultracool Dwarf , 2017, 1703.08548.

[22]  R. Pogge,et al.  Korea Microlensing Telescope Network Microlensing Events from 2015: Event-finding Algorithm, Vetting, and Photometry , 2017, 1703.06883.

[23]  C. H. Ling,et al.  The Exoplanet Mass-Ratio Function from the MOA-II Survey: Discovery of a Break and Likely Peak at a Neptune Mass , 2016, 1612.03939.

[24]  P. Yock,et al.  Extending the planetary mass function to Earth mass by microlensing at moderately high magnification , 2013, 1303.4123.

[25]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[26]  M. Schultheis,et al.  Reddening and metallicity maps of the Milky Way bulge from VVV and 2MASS II. The complete high resolution extinction map and implications for Galactic bulge studies , 2012, 1204.4004.

[27]  R. de Grijs,et al.  VISTA Variables in the Via Lactea (VVV): The public ESO near-IR variability survey of the Milky Way , 2009, 0912.1056.

[28]  C. H. Ling,et al.  Mass measurement of a single unseen star and planetary detection efficiency for OGLE 2007-BLG-050 , 2009, 0907.3471.

[29]  J. Beaulieu,et al.  Difference imaging photometry of blended gravitational microlensing events with a numerical kernel , 2009, 0905.3003.

[30]  B. Gaudi,et al.  A Characteristic Planetary Feature in Double-Peaked, High-Magnification Microlensing Events , 2008, 0805.1103.

[31]  Cheongho Han,et al.  Properties of Planetary Caustics in Gravitational Microlensing , 2005, astro-ph/0510206.

[32]  J. Beaulieu,et al.  A Jovian-Mass Planet in Microlensing Event OGLE-2005-BLG-071 , 2005, astro-ph/0505451.

[33]  D. Bersier,et al.  Cepheid distances from infrared long-baseline interferometry III. Calibration of the surface brightness-color relations , 2004 .

[34]  F. Thevenin,et al.  The angular sizes of dwarf stars and subgiants Surface brightness relations calibrated by interferometry , 2004, astro-ph/0404180.

[35]  B. Gaudi,et al.  MOA 2003-BLG-37: A Bulge Jerk-Parallax Microlens Degeneracy , 2004, astro-ph/0401250.

[36]  Korea,et al.  OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens , 2003, astro-ph/0309302.

[37]  P. M. Vreeswijk,et al.  Microlensing Constraints on the Frequency of Jupiter-Mass Companions: Analysis of 5 Years of PLANET Photometry , 2001, astro-ph/0104100.

[38]  J. Holtzman,et al.  The Luminosity Function and Initial Mass Function in the Galactic Bulge , 1998, astro-ph/9801321.

[39]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[40]  K. Griest,et al.  The Use of High-Magnification Microlensing Events in Discovering Extrasolar Planets , 1997, astro-ph/9710342.

[41]  Andrew Gould,et al.  Planet Parameters in Microlensing Events , 1996, astro-ph/9610123.

[42]  P. Schechter,et al.  DOPHOT, A CCD PHOTOMETRY PROGRAM: DESCRIPTION AND TESTS , 1993 .

[43]  Andrew Gould,et al.  Discovering Planetary Systems through Gravitational Microlenses , 1992 .

[44]  M. Bessell,et al.  JHKLM PHOTOMETRY: STANDARD SYSTEMS, PASSBANDS, AND INTRINSIC COLORS , 1988 .

[45]  Bohdan Paczynski,et al.  Gravitational microlensing by the galactic halo , 1986 .

[46]  S. Refsdal,et al.  Flux variations of QSO 0957 + 561 A, B and image splitting by stars near the light path , 1979, Nature.

[47]  S. Lucatello,et al.  UvA-DARE ( Digital Academic Repository ) Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars : II . Ages , metallicities , detailed elemental abundances , and connections to the Galactic thick disc , 2010 .

[48]  to appear in the Astrophysical Journal Letters Microlens Mass Measurement using Triple-Peak Events , 2022 .