A Domain-Specific Language for Do-It-Yourself Analytical Mashups

The increasing amount and variety of data available in the web leads to new possibilities in end-user focused data analysis. While the classic data base technologies for data integration and analysis (ETL and BI) are too complex for the needs of end users, newer technologies like web mashups are not optimal for data analysis. To make productive use of the data available on the web, end users need easy ways to find, join and visualize it. We propose a domain specific language (DSL) for querying a repository of heterogeneous web data. In contrast to query languages such as SQL, this DSL describes the visualization of the queried data in addition to the selection, filtering and aggregation of the data. The resulting data mashup can be made interactive by leaving parts of the query variable. We also describe an abstraction layer above this DSL that uses a recommendation-driven natural language interface to reduce the difficulty of creating queries in this DSL.