Hypoxia imaging with [18F]-FMISO-PET for guided dose escalation with intensity-modulated radiotherapy in head-and-neck cancers

Background and purposePositron emission tomography (PET) with [18F]-fluoromisonidazole ([18F]-FMISO) provides a non-invasive assessment of hypoxia. The aim of this study is to assess the feasibility of a dose escalation with volumetric modulated arc therapy (VMAT) guided by [18F]-FMISO-PET for head-and-neck cancers (HNC).Patients and methodsTen patients with inoperable stages III–IV HNC underwent [18F]-FMISO-PET before radiotherapy. Hypoxic target volumes (HTV) were segmented automatically by using the fuzzy locally adaptive Bayesian method. Retrospectively, two VMAT plans were generated delivering 70 Gy to the gross tumour volume (GTV) defined on computed tomography simulation or 79.8 Gy to the HTV. A dosimetric comparison was performed, based on calculations of tumour control probability (TCP), normal tissue complication probability (NTCP) for the parotid glands and uncomplicated tumour control probability (UTCP).ResultsThe mean hypoxic fraction, defined as the ratio between the HTV and the GTV, was 0.18. The mean average dose for both parotids was 22.7 Gy and 25.5 Gy without and with dose escalation respectively. FMISO-guided dose escalation led to a mean increase of TCP, NTCP for both parotids and UTCP by 18.1, 4.6 and 8 % respectively.ConclusionA dose escalation up to 79.8 Gy guided by [18F]-FMISO-PET with VMAT seems feasible with improvement of TCP and without excessive increase of NTCP for parotids.ZusammenfassungHintergrund und ZielsetzungDie Positronenemissionstomographie (PET) mit [18F]-Fluoromisonidazol ([18F]-FMISO) ermöglicht eine nichtinvasive Beurteilung der Hypoxie. Ziel dieser Studie ist es, die Durchführbarkeit einer [18F]-FMISO-PET-geführten Dosissteigerung bei volumetrisch modulierter Arc-Therapie (VMAT) von Kopf-Hals-Tumoren (KHT) zu bewerten.Patienten und MethodenZehn Patienten mit inoperablen KHT der Stadien III-IV erhielten vor der Strahlentherapie eine [18F]-FMISO-PET. Hypoxische Zielvolumina (HV) wurden automatisch mit Hilfe des FLAB(Fuzzy Locally Adaptive Bayesian)-Verfahrens segmentiert. Retrospektiv wurden 2 VMAT-Pläne erstellt, mit 70 Gy auf das CT-basierte GTV („gross tumour volume“) bzw. 79,8 Gy auf das HV. Durchgeführt wurde ein Vergleich der Dosimetrie, basierend auf Berechnungen von TCP („tumour control probability“), NTCP („normal tissue complication probability“) für die Glandulae (Gl.) parotidis und UTCP („uncomplicated tumour control probability“).ErgebnisseDie mittlere hypoxische Fraktion, definiert als das Verhältnis zwischen HV und GTV, betrug 0,18. Die mittlere durchschnittliche Dosis für beide Parotiden betrug 22,7 Gy ohne und 25,5 Gy mit Dosissteigerung. Die FMISO-geführte Dosissteigerung ergab einen mittleren Anstieg von TCP, NTCP für beide Gl. parotidis und UTCP um 18,1/4,6 bzw. 8 %.SchlussfolgerungEine [18F]-FMISO-PET-geführte Dosissteigerung mit VMAT bis zu 79,8 Gy scheint mit einer Verbesserung der TCP und ohne übermäßige Erhöhung der NTCP für die Gl. parotidis durchführbar zu sein.

[1]  S. Nuyts,et al.  Intensity-modulated radiotherapy vs. parotid-sparing 3D conformal radiotherapy , 2013, Strahlentherapie und Onkologie.

[2]  Daniela Thorwarth,et al.  A model of reoxygenation dynamics of head-and-neck tumors based on serial 18F-fluoromisonidazole positron emission tomography investigations. , 2007, International journal of radiation oncology, biology, physics.

[3]  Randall K Ten Haken,et al.  Parotid gland function after radiotherapy: the combined michigan and utrecht experience. , 2008, International journal of radiation oncology, biology, physics.

[4]  J. Lyman Complication Probability as Assessed from Dose-Volume Histograms , 1985 .

[5]  David J. Carlson,et al.  Effects of oxygen on intrinsic radiation sensitivity: A test of the relationship between aerobic and hypoxic linear-quadratic (LQ) model parametersa). , 2006, Medical physics.

[6]  F. Lamare,et al.  Potential of [18F]-Fluoromisonidazole positron-emission tomography for radiotherapy planning in head and neck squamous cell carcinomas , 2013, Strahlentherapie und Onkologie.

[7]  J. Lyman Complication probability as assessed from dose-volume histograms. , 1985, Radiation research. Supplement.

[8]  Christian Roux,et al.  A Fuzzy Locally Adaptive Bayesian Segmentation Approach for Volume Determination in PET , 2009, IEEE Transactions on Medical Imaging.

[9]  J. Overgaard,et al.  Modification of Hypoxia-Induced Radioresistance in Tumors by the Use of Oxygen and Sensitizers. , 1996, Seminars in radiation oncology.

[10]  Lei Dong,et al.  Investigation of bladder dose and volume factors influencing late urinary toxicity after external beam radiotherapy for prostate cancer. , 2007, International journal of radiation oncology, biology, physics.

[11]  S Webb,et al.  A model for calculating tumour control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cell density. , 1993, Physics in medicine and biology.

[12]  M. D'Andrea,et al.  A heterogeneous dose distribution in simultaneous integrated boost: the role of the clonogenic cell density on the tumor control probability , 2008, Physics in medicine and biology.

[13]  Vladimir A Semenenko,et al.  Effects of oxygen on intrinsic radiation sensitivity: A test of the relationship between aerobic and hypoxic linear-quadratic (LQ) model parameters. , 2006, Medical physics.

[14]  Sigrid Stroobants,et al.  Dose Painting in Radiotherapy for Head and Neck Squamous Cell Carcinoma: Value of Repeated Functional Imaging with 18F-FDG PET, 18F-Fluoromisonidazole PET, Diffusion-Weighted MRI, and Dynamic Contrast-Enhanced MRI , 2009, Journal of Nuclear Medicine.

[15]  Sadek Nehmeh,et al.  The influence of changes in tumor hypoxia on dose-painting treatment plans based on 18F-FMISO positron emission tomography. , 2008, International journal of radiation oncology, biology, physics.

[16]  D. Brizel,et al.  Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. , 2005, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[17]  岡本祥三 High reproducibility of tumor hypoxia evaluated by 18 F-fluoromisonidazole PET for head and neck cancer. , 2014 .

[18]  Daniel A Low,et al.  Patterns of failure in patients receiving definitive and postoperative IMRT for head-and-neck cancer. , 2003, International journal of radiation oncology, biology, physics.

[19]  Michael Baumann,et al.  Exploratory prospective trial of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer. , 2012, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[20]  C C Ling,et al.  Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. , 2000, International journal of radiation oncology, biology, physics.

[21]  R Mohan,et al.  Clinically relevant optimization of 3-D conformal treatments. , 1992, Medical physics.

[22]  V Grégoire,et al.  Selection and delineation of lymph node target volumes in head and neck conformal radiotherapy. Proposal for standardizing terminology and procedure based on the surgical experience. , 2000, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[23]  Daniela Thorwarth,et al.  Hypoxia dose painting by numbers: a planning study. , 2007, International journal of radiation oncology, biology, physics.

[24]  David L. Schwartz,et al.  Tumor Hypoxia Imaging with [F-18] Fluoromisonidazole Positron Emission Tomography in Head and Neck Cancer , 2006, Clinical Cancer Research.

[25]  Fréderic Duprez,et al.  Maximum tolerated dose in a phase I trial on adaptive dose painting by numbers for head and neck cancer. , 2011, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[26]  Roland Bares,et al.  Hypoxia-imaging with 18F-Misonidazole and PET: Changes of kinetics during radiotherapy of head-and-neck cancer , 2007 .

[27]  J. M. Taylor,et al.  Dose fractionation and regeneration in radiotherapy for cancer of the oral cavity and oropharynx: tumor dose-response and repopulation. , 1989, International journal of radiation oncology, biology, physics.

[28]  Roland Bares,et al.  Hypoxia-imaging with (18)F-Misonidazole and PET: changes of kinetics during radiotherapy of head-and-neck cancer. , 2007, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[29]  Alessandra Bolsi,et al.  Comparative dosimetric evaluation of the simultaneous integrated boost with photon intensity modulation in head and neck cancer patients. , 2003, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[30]  Keiichi Magota,et al.  High Reproducibility of Tumor Hypoxia Evaluated by 18F-Fluoromisonidazole PET for Head and Neck Cancer , 2013, The Journal of Nuclear Medicine.

[31]  Dimitris Visvikis,et al.  Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. , 2010, International journal of radiation oncology, biology, physics.