The observed ionization rate of the intergalactic medium and the ionizing emissivity at z≥ 5: evidence for a photon-starved and extended epoch of reionization

Galaxies and quasars are thought to provide the bulk of the photons responsible for ionizing the hydrogen in the intergalactic medium (IGM). We use a large set of hydrodynamical simulations, combined with measurements of the Lya opacity of the IGM taken from the literature, to obtain robust estimates of the photoionization rate per hydrogen atom at z = 5 and 6. We find the photoionization rate drops by a factor of 2 and 4, respectively, compared to our recent measurements at z= 2-4. The number of ionizing photons emitted by known sources at z = 5 and 6, based on an extrapolation of source numbers below the detection limit and standard assumptions for the relationship between the ionizing emissivity and observed luminosity density at 1500 A, are in reasonable agreement with the photoionization rates inferred from the Lyα forest if the escape fraction of ionizing photons from galaxies is large (≥20 per cent). The expected number of ionizing photons from observed sources at these redshifts therefore appears sufficient to maintain the IGM in its highly ionized state. Claims to the contrary may be attributed to the adoption of an unduly high value for the clumping factor of ionized hydrogen. Using physically motivated assumptions for the mean free path of ionizing photons our measurements of the photoionization rate can be turned into an estimate of the ionizing emissivity. In comoving units the inferred ionizing emissivity is nearly constant over the redshift range 2-6 and corresponds to 1.5-3 photons emitted per hydrogen atom over a time interval corresponding to the age of the Universe at z = 6. This strongly suggests that the epoch of reionization was photon-starved and extended. Completion of reionization at or before z = 6 requires either an emissivity which rises towards higher redshifts or one which remains constant but is dominated by sources with a rather hard spectral index. For standard assumptions, the ionizing emissivity required for completion of reionization at or before z = 6 lies at the upper end of recently reported values from searches for high-redshift galaxies at z = 8-10.

[1]  Volker Springel,et al.  Inferring the dark matter power spectrum from the Lyman α forest in high-resolution QSO absorption spectra , 2004, astro-ph/0404600.

[2]  R. Croft,et al.  The Power Spectrum of Mass Fluctuations Measured from the Lyα Forest at Redshift z = 2.5 , 1998, astro-ph/9809401.

[3]  Wayne Hu,et al.  Power Spectra for Cold Dark Matter and Its Variants , 1997, astro-ph/9710252.

[4]  J. Ostriker,et al.  Quasar ionization of Lyman-alpha clouds - The proximity effect, a probe of the ultraviolet background at high redshift , 1988 .

[5]  J. Ostriker,et al.  Reionization of the Universe and the Early Production of Metals , 1996, astro-ph/9612127.

[6]  Department of Physics,et al.  accepted for publication in the Astrophysical Journal Luminous Lyman Break Galaxies at z>5 and the Source of , 2003 .

[7]  J. Ostriker,et al.  What Produces the Ionizing Background at Large Redshift , 1990 .

[8]  R. Nichol,et al.  A Feature at z ∼ 3.2 in the Evolution of the Lyα Forest Optical Depth , 2002, astro-ph/0206293.

[9]  Volker Bromm,et al.  Generic Spectrum and Ionization Efficiency of a Heavy Initial Mass Function for the First Stars , 2001 .

[10]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[11]  Cosmic reionization by stellar sources: Population II stars , 2003, astro-ph/0303098.

[12]  On the Evolution of the Ionizing Emissivity of Galaxies and Quasars Required by the Hydrogen Reionization , 2002, astro-ph/0211071.

[13]  M. Dijkstra,et al.  Lyα constraints on very low luminosity active galactic nuclei , 2006 .

[14]  Garching,et al.  Lyman-break galaxies at z ~ 5 – I. First significant stellar mass assembly in galaxies that are not simply z ~ 3 LBGs at higher redshift , 2007, astro-ph/0701725.

[15]  A. Leonard,et al.  P3M‐SPH simulations of the Lyα forest , 1998, astro-ph/9805119.

[16]  The nature and evolution of the highly ionized near-zones in the absorption spectra of z≃ 6 quasars , 2006, astro-ph/0607331.

[17]  Probing the Universe with the Lyα forest — I. Hydrodynamics of the low-density intergalactic medium , 1997, astro-ph/9706219.

[18]  P. Petitjean,et al.  Evidence for overdensity around zem > 4 quasars from the proximity effect , 2007, astro-ph/0702369.

[19]  R. Cen A hydrodynamic approach to cosmology - Methodology , 1992 .

[20]  A. Meiksin Constraints on the ionization sources of the high‐redshift intergalactic medium , 2004, astro-ph/0409256.

[21]  W. Sargent,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 4/9/03 METALLICITY OF THE INTERGALACTIC MEDIUM USING PIXEL STATISTICS. II. THE DISTRIBUTION OF METALS AS TRACED BY CIV 1 , 2003 .

[22]  P. Mcdonald,et al.  Evolution of the Ionizing Radiation Background and Star Formation in the Aftermath of Cosmological Reionization , 2001, astro-ph/0110306.

[23]  The H I opacity of the intergalactic medium at redshifts 1.6 < z < 3.2 , 2005, astro-ph/0504391.

[24]  Martin J. Rees,et al.  Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Sources , 1998, astro-ph/9809058.

[25]  D. Barnes,et al.  Prospects for Redshifted 21 cm Observations of Quasar H II Regions , 2005, astro-ph/0506045.

[26]  Luminosity functions of Lyα emitting galaxies and cosmic reionization of hydrogen , 2006, astro-ph/0611195.

[27]  Martin J. Rees,et al.  Reionization of the Inhomogeneous Universe , 1998, astro-ph/9812306.

[28]  The density structure around quasars from optical depth statistics , 2005, astro-ph/0502284.

[29]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[30]  Abraham Loeb,et al.  In the Beginning: The First Sources of Light and the Reionization of the Universe , 2000 .

[31]  Kentaro Aoki,et al.  Implications for Cosmic Reionization from the Optical Afterglow Spectrum of the Gamma-Ray Burst 050904 at z = 6.3 , 2005, astro-ph/0512154.

[32]  J. Devriendt,et al.  Contribution of Galaxies to the Background Hydrogen-Ionizing Flux , 1998, astro-ph/9804086.

[33]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[34]  Possible Detection of Cosmological Reionization Sources , 2004, astro-ph/0405219.

[35]  Confronting Cosmological Simulations with Observations of Intergalactic Metals , 2004, astro-ph/0411076.

[36]  Evolving Spectra of Population III Stars: Consequences for Cosmological Reionization , 2002, astro-ph/0206390.

[37]  R. Windhorst,et al.  The Major Sources of the Cosmic Reionizing Background at z ≃ 6 , 2003, astro-ph/0312572.

[38]  J. Kneib,et al.  Constraining the population of 6 < z < 10 star-forming galaxies with deep near-IR images of lensing clusters , 2006, astro-ph/0606134.

[39]  J. Bullock,et al.  Faint Active Galactic Nuclei and the Ionizing Background , 2003 .

[40]  A. Doroshkevich,et al.  Physical state of the intergalactic medium at redshifts z= 2–4 , 2004 .

[41]  B. Oppenheimer,et al.  Cosmological simulations of intergalactic medium enrichment from galactic outflows , 2006, astro-ph/0605651.

[42]  M. Fardal,et al.  The High-Redshift He II Gunn-Peterson Effect: Implications and Future Prospects , 1998, astro-ph/9802246.

[43]  Max Pettini,et al.  The Direct Detection of Lyman Continuum Emission from Star-forming Galaxies at z~3 , 2006, astro-ph/0606635.

[44]  S. Mathur,et al.  On the Faint End of the High-Redshift Active Galactic Nucleus Luminosity Function , 2007, astro-ph/0701515.

[45]  The Stellar Masses and Star Formation Histories of Galaxies at z ≈ 6: Constraints from Spitzer Observations in the Great Observatories Origins Deep Survey , 2006, astro-ph/0604554.

[46]  P. Mcdonald,et al.  The Lyα Forest Flux Distribution at z ~ 5.2 and the Evolution of the Ionizing Background , 2000, astro-ph/0008045.

[47]  Robert H. Becker,et al.  Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars , 2005, astro-ph/0512082.

[48]  L. Hernquist,et al.  The Opacity of the Lyα Forest and Implications for Ωb and the Ionizing Background , 1996, astro-ph/9612245.

[49]  Constraining the quasar contribution to the reionization of cosmic hydrogen , 2006, astro-ph/0610306.

[50]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[51]  A Limit from the X-Ray Background on the Contribution of Quasars to Reionization , 2004, astro-ph/0403078.

[52]  Reionization, Sloan, and WMAP: Is the Picture Consistent? , 2004, astro-ph/0403699.

[53]  Constraining the reionization history with qso absorption spectra , 2005, astro-ph/0512129.

[54]  Early reionization by miniquasars , 2003, astro-ph/0310223.

[55]  A. Hamilton,et al.  Matter power spectrum from the Lyman-alpha forest: myth or reality? , 2001, astro-ph/0111194.

[56]  K. Schawinski,et al.  The physical nature of Lyα-emitting galaxies at z = 3.1 , 2006, astro-ph/0603244.

[57]  Experimental constraints on self-consistent reionization models , 2004, astro-ph/0411027.

[58]  S. V. Penton,et al.  The Metagalactic Ionizing Radiation Field at Low Redshift , 1999, astro-ph/9907123.

[59]  Minihalo photoevaporation during cosmic reionization : evaporation times and photon consumption rates , 2004, astro-ph/0408408.

[60]  R. Bouwens,et al.  Constraints on z ≈ 10 Galaxies from the Deepest Hubble Space Telescope NICMOS Fields , 2005, astro-ph/0503116.

[61]  Evolution of Structure in the Intergalactic Medium and the Nature of the Lyα Forest , 1996, astro-ph/9611062.

[62]  A. Maselli,et al.  Radiative transfer effects on the Lyα forest , 2005, astro-ph/0510258.

[63]  S. Cristiani,et al.  The contribution of galaxies to the UV ionising background and the evolution of the Lyman forest , 2001, astro-ph/0106526.

[64]  R. Cen,et al.  The Lyα Forest from Gravitational Collapse in the Cold Dark Matter + Λ Model , 1995, astro-ph/9511013.

[65]  G. Kriss,et al.  The Fluctuating Intergalactic Radiation Field at Redshifts z = 2.3-2.9 from He II and H I Absorption toward HE 2347–4342 , 2003, astro-ph/0309625.

[66]  Z. Haiman,et al.  Constraints on reionization and source properties from the absorption spectra of z > 6.2 quasars , 2006, astro-ph/0610258.

[67]  J. Bechtold,et al.  A Uniform Analysis of the Lyα Forest at z = 0-5. II. Measuring the Mean Intensity of the Extragalactic Ionizing Background Using the Proximity Effect , 2000, astro-ph/0004155.

[68]  Wen-Ching,et al.  A concordance model of the Lyman α forest at z= 1.95 , 2004, astro-ph/0412557.

[69]  Cosmic reionization by stellar sources: population III stars , 2003, astro-ph/0307451.

[70]  Evidence for strong evolution of the cosmic star formation density at high redshifts , 2006, astro-ph/0607143.

[71]  A. Fontana,et al.  The Proximity Effect, the UV Background and the Statistics of the Lyman-Alpha Lines at High Resolution , 1996, astro-ph/9602026.

[72]  J. Schaye Model-independent Insights into the Nature of the Lyα Forest and the Distribution of Matter in the Universe , 2001, astro-ph/0104272.

[73]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[74]  J. Hutchings,et al.  Agn Physics with the Sloan Digital Sky Survey Asp Conference Series, Vol. **volume***, 2004 a Composite Extreme Ultraviolet Qso Spectrum from Fuse , 2022 .

[75]  Cambridge,et al.  The star formation rate of the Universe at z~ 6 from the Hubble Ultra-Deep Field , 2004, astro-ph/0403223.

[76]  The Evolution of Optical Depth in the Lyα Forest: Evidence Against Reionization at z~6* , 2006, astro-ph/0607633.

[77]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[78]  The End of the Reionization Epoch Probed by Lyα Emitters at z = 6.5 in the Subaru Deep Field* ** , 2006, astro-ph/0604149.

[79]  Cosmological parameters from combining the Lyman-α forest with CMB, galaxy clustering and SN constraints , 2006, astro-ph/0604335.

[80]  J. Silk,et al.  Astronomy & Astrophysics manuscript no. (will be inserted by hand later) The phase-diagram of cosmological baryons , 2001 .

[81]  S. Okamura,et al.  Luminosity Functions of Lyman Break Galaxies at z ~ 4 and z ~ 5 in the Subaru Deep Field , 2006, astro-ph/0608512.

[82]  Cosmic variance in the transparency of the intergalactic medium after reionization , 2005, astro-ph/0508604.

[83]  Matteo Viel,et al.  Spatial fluctuations in the spectral shape of the ultraviolet background at 2 > z > 3 and the reionization of helium , 2006 .

[84]  M. Irwin,et al.  Evolution of Lyman-limit absorption systems over the redshift range 0.40 < Z < 4.69 , 1994 .

[85]  Michael R. Santos Probing reionization with Lyman α emission lines , 2003, astro-ph/0308196.

[86]  Bruce A. Peterson,et al.  On the Density of Neutral Hydrogen in Intergalactic Space , 1965 .

[87]  The escape fraction of ionizing photons from galaxies at z= 0–6 , 2006, astro-ph/0605526.

[88]  Cambridge,et al.  Probing the growth of supermassive black holes at z > 6 with LOFAR , 2006, astro-ph/0609081.

[89]  Z. Haiman,et al.  The Thermal Memory of Reionization History , 2003, astro-ph/0302439.

[90]  Haojing Yan,et al.  Candidates of z ≃ 5.5-7 Galaxies in the Hubble Space Telescope Ultra Deep Field , 2004 .

[91]  The thermal history of the intergalactic medium , 1999, astro-ph/9912432.

[92]  R. Ellis,et al.  A New Measurement of the Stellar Mass Density at z~=5: Implications for the Sources of Cosmic Reionization , 2006, astro-ph/0604250.

[93]  Robert H. Becker,et al.  Evolution of the ionizing background and the epoch of reionization from the spectra of z ∼ 6 quasars , 2001 .

[94]  S. M. Fall,et al.  Evidence for a Massive Poststarburst Galaxy at z ~ 6.5 , 2005, astro-ph/0509768.

[95]  A. Maselli,et al.  On the size of H II regions around high-redshift quasars , 2006, Proceedings of the International Astronomical Union.

[96]  S. Zaroubi,et al.  LOFAR as a probe of the sources of cosmological reionization , 2004, astro-ph/0412080.

[97]  W. Brandt,et al.  Very High Redshift X-Ray-selected Active Galactic Nuclei in the Chandra Deep Field-North , 2003, astro-ph/0301232.

[98]  T. Abel,et al.  A “Minihalo” Model for the Lyman Limit Absorption Systems at High Redshift , 1997, astro-ph/9712119.

[99]  M. White,et al.  Constraints on the ultraviolet metagalactic emissivity using the Lyα forest , 2003, astro-ph/0303302.

[100]  High-redshift quasars found in sloan digital sky survey commissioning data. IV. Luminosity function from the fall equatorial stripe sample , 2000, astro-ph/0008123.

[101]  N. Gnedin,et al.  Cosmic Reionization Redux , 2006, astro-ph/0603794.

[102]  A. Fontana,et al.  A Low Upper Limit to the Lyman Continuum Emission of Two Galaxies at z ≃ 3 , 2002, astro-ph/0202293.

[103]  A. Banday,et al.  Evolution of large scale structure : from recombination to Garching : proceedings of the MPA-ESO Cosmology Conference : Garching, Germany, 2-7 August 1998 , 1999 .

[104]  A. Fernandez-Soto,et al.  Mission: impossible (escape from the Lyman limit) , 2003 .

[105]  A. Songaila The Evolution of the Intergalactic Medium Transmission to Redshift 6 , 2004, astro-ph/0402347.

[106]  M. White,et al.  The effects of ultraviolet background correlations on Lyα forest flux statistics , 2003, astro-ph/0307289.

[107]  C. Steidel,et al.  The Faint End of the QSO Luminosity Function at z = 3 , 2003, astro-ph/0312041.

[108]  et al,et al.  A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ∼ 6 , 2001, astro-ph/0108063.

[109]  N. Suzuki,et al.  Cosmological Parameters σ8, the Baryon Density Ωb, the Vacuum Energy Density ΩΛ, the Hubble Constant and the UV Background Intensity from a Calibrated Measurement of H I Lyα Absorption at z = 1.9 , 2004 .

[110]  J. Brinkmann,et al.  A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. IV. Discovery of Seven Additional Quasars , 2004, astro-ph/0405138.

[111]  A. Songaila The Redshift Evolution of the Metagalactic Ionizing Flux Inferred from Metal Line Ratios in the Lyman Forest , 1998, astro-ph/9803010.

[112]  G. Starkman,et al.  Axiorecombination: A New Mechanism for Stellar Axion Production , 1986 .

[113]  X-ray pre-ionization powered by accretion on the first black holes — II. Cosmological simulations and observational signatures , 2004, astro-ph/0404318.

[114]  The Lyman alpha forest opacity and the metagalactic hydrogen ionization rate at z~ 2-4 , 2004, astro-ph/0411072.

[115]  Summary: Clusters of Galaxies and the High Redshift Universe Observed in X-Rays , 2001, astro-ph/0106471.

[116]  NOAO,et al.  New Constraints on the Lyman Continuum Escape Fraction at z ~ 1.3 , 2007, 0706.4093.

[117]  U. Copenhagen,et al.  Escape of Ionizing Radiation from Star-forming Regions in Young Galaxies , 2006, astro-ph/0609545.

[118]  Richard S. Ellis,et al.  A Keck Survey for Gravitationally Lensed Lyα Emitters in the Redshift Range 8.5 < z < 10.4: New Constraints on the Contribution of Low-Luminosity Sources to Cosmic Reionization , 2007 .

[119]  M. Franx,et al.  Galaxies at z~6: The UV Luminosity Function and Luminosity Density from 506 UDF, UDF-Ps, and GOODS i-dropouts , 2005, astro-ph/0509641.

[120]  P. Madau,et al.  On the photoionization of the intergalactic medium by quasars at high redshift , 1993 .

[121]  Simulating Cosmic Reionization at Large Scales I: the Geometry of Reionization , 2005, astro-ph/0512187.

[122]  L. Hui,et al.  Equation of state of the photoionized intergalactic medium , 1996, astro-ph/9612232.

[123]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[124]  Taxing the rich: Recombinations and bubble growth during reionization , 2005, astro-ph/0505065.

[125]  J. Shull,et al.  Cosmological Effects of the First Stars: Evolving Spectra of Population III , 2002, astro-ph/0206389.

[126]  Ionizing Radiation Fluctuations and Large-Scale Structure in the Lyα Forest , 2003, astro-ph/0310890.