Anticanonically balanced metrics and the Hilbert-Mumford criterion for the $\delta_m$-invariant of Fujita-Odaka

We prove that the stability condition for Fano manifolds defined by Saito–Takahashi, given in terms of the sum of the Ding invariant and the Chow weight, is equivalent to the existence of anticanonically balanced metrics. Combined with the result by Rubinstein–Tian–Zhang, we obtain the following algebro-geometric corollary: the δm-invariant of Fujita–Odaka satisfies δm > 1 if and only if the Fano manifold is stable in the sense of Saito–Takahashi, establishing a Hilbert–Mumford type criterion for δm > 1. We also extend this result to the Kähler–Ricci g-solitons and the coupled Kähler–Einstein metrics, and as a by-product we obtain a formula for the asymptotic slope of the coupled Ding functional in terms of multiple test configurations.

[1]  T. Mabuchi Kähler-Einstein metrics for manifolds with nonvanishing Futaki character , 2001 .

[2]  Curvature of vector bundles associated to holomorphic fibrations , 2005, math/0511225.

[3]  Coupled complex Monge-Ampère equations on Fano horosymmetric manifolds , 2018, 1812.07218.

[4]  Tomoyuki Hisamoto Mabuchi's soliton metric and relative D-stability , 2019, American Journal of Mathematics.

[5]  B. Berndtsson A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry , 2013, 1303.4975.

[6]  Jakob Hultgren Coupled Kähler–Ricci solitons on toric Fano manifolds , 2017, Analysis & PDE.

[7]  Gábor Székelyhidi An Introduction to Extremal Kahler Metrics , 2014 .

[8]  R. Dervan Uniform stability of twisted constant scalar curvature K\"ahler metrics , 2014, 1412.0648.

[9]  Satoshi X. Nakamura Deformation for coupled Kähler–Einstein metrics , 2021 .

[10]  R. Berman,et al.  Convexity of the extended K-energy and the large time behavior of the weak Calabi flow , 2015, 1510.01260.

[11]  N. Yotsutani Facets of secondary polytopes and Chow stability of toric varieties , 2013, 1306.4504.

[12]  Kento Fujita A valuative criterion for uniform K-stability of ℚ-Fano varieties , 2019, Journal für die reine und angewandte Mathematik (Crelles Journal).

[13]  P. Newstead Moduli Spaces and Vector Bundles: Geometric Invariant Theory , 2009 .

[14]  David Witt Nyström,et al.  Coupled Kähler–Einstein Metrics , 2016 .

[15]  S. Yau On The Ricci Curvature of a Compact Kahler Manifold and the Complex Monge-Ampere Equation, I* , 1978 .

[16]  Y. Hashimoto Mapping properties of the Hilbert and Fubini–Study maps in Kähler geometry , 2017, 1705.11025.

[17]  M. Jonsson,et al.  Thresholds, valuations, and K-stability , 2017, Advances in Mathematics.

[18]  M. Jonsson,et al.  Uniform K-stability and asymptotics of energy functionals in Kähler geometry , 2016, Journal of the European Mathematical Society.

[19]  Julien Keller,et al.  About J-flow, J-balanced metrics, uniform J-stability and K-stability , 2017, 1705.02000.

[20]  Kewei Zhang A quantization proof of the uniform Yau-Tian-Donaldson conjecture , 2021 .

[21]  Ono A necessary condition for Chow semistability of polarized toric manifolds , 2011 .

[22]  Xu Chen,et al.  Special test configurations and $K$-stability of Fano varieties , 2011, 1111.5398.

[23]  Kento Fujita Optimal bounds for the volumes of Kähler-Einstein Fano manifolds , 2015, 1508.04578.

[24]  Tomoyuki Hisamoto Stability and coercivity for toric polarizations , 2016, 1610.07998.

[25]  Yingying Zhang,et al.  Residue formula for an obstruction to coupled Kähler–Einstein metrics , 2019, Journal of the Mathematical Society of Japan.

[26]  Chi Li G-uniform stability and Kähler-Einstein metrics on Fano varieties , 2019 .

[27]  S. Yau,et al.  Asymptotic Chow polystability in Kähler geometry , 2012 .

[28]  Yi-jun Yao Mabuchi Metrics and Relative Ding Stability of Toric Fano Varieties , 2017 .

[29]  Shou-wu Zhang Heights and reductions of semi-stable varieties , 1996 .

[30]  M. Jonsson,et al.  A variational approach to the Yau–Tian–Donaldson conjecture , 2015, Journal of the American Mathematical Society.

[31]  Ryosuke Takahashi Asymptotic stability for Kähler–Ricci solitons , 2015, 1503.05668.

[32]  Kewei Zhang,et al.  Basis divisors and balanced metrics , 2020, Journal für die reine und angewandte Mathematik.

[33]  R. Berman,et al.  Complex optimal transport and the pluripotential theory of K\"ahler-Ricci solitons , 2014, 1401.8264.

[34]  D. Phong,et al.  Stability, energy functionals, and Kahler-Einstein metrics , 2002, math/0203254.

[35]  Hua Luo Geometric criterion for Gieseker-Mumford stability of polarized manifolds , 1998 .

[36]  Gábor Székelyhidi Extremal metrics and K‐stability , 2004, math/0410401.

[37]  S. Donaldson Scalar Curvature and Projective Embeddings, I , 2001 .

[38]  Xinghua Gao,et al.  Symmetric Spaces , 2014 .

[39]  Lower bounds on the Calabi functional , 2005, math/0506501.

[40]  Y. Odaka,et al.  On the K-stability of Fano varieties and anticanonical divisors , 2016, Tohoku Mathematical Journal.

[41]  A. Futaki ASYMPTOTIC CHOW SEMI-STABILITY AND INTEGRAL INVARIANTS , 2004 .

[42]  J. Duistermaat,et al.  On the variation in the cohomology of the symplectic form of the reduced phase space , 1982 .

[43]  R. Lazarsfeld Classical setting : line bundles and linear series , 2004 .

[44]  Xu-jia Wang,et al.  Kahler-Ricci solitons on toric manifolds with positive first Chern class , 2004 .

[45]  A. Futaki An obstruction to the existence of Einstein Kähler metrics , 1983 .

[46]  Robert Lazarsfeld,et al.  Positivity in algebraic geometry , 2004 .

[47]  S. Donaldson Scalar Curvature and Stability of Toric Varieties , 2002 .

[48]  S. Bando,et al.  Uniqueness of Einstein Kähler Metrics Modulo Connected Group Actions , 1987 .

[49]  Y. Hashimoto Quantisation of Extremal Kähler Metrics , 2015, 1508.02643.

[50]  Motivated by the proposed study of coupled Kähler-Einstein metrics by Hultgren and Witt Nyström , 2019 .

[51]  D. Rall,et al.  Thresholds? , 1978, Environmental health perspectives.

[52]  Anticanonically balanced metrics on Fano manifolds , 2020, Annals of Global Analysis and Geometry.

[53]  R. Berman,et al.  A variational approach to complex Monge-Ampère equations , 2009, 0907.4490.

[54]  A study of the Hilbert-Mumford criterion for the stability of projective varieties , 2004, math/0412519.

[55]  Vamsi Pingali Existence of coupled K\"ahler-Einstein metrics using the continuity method , 2016, 1609.02047.

[56]  N. Chriss,et al.  Representation theory and complex geometry , 1997 .

[57]  Xiaohua Zhu Kähler-Ricci soliton typed equations on compact complex manifolds withC1(M) > 0 , 2000 .

[58]  Vamsi Pingali,et al.  On coupled constant scalar curvature Kähler metrics , 2019, Journal of Symplectic Geometry.

[59]  G. Tian,et al.  A new holomorphic invariant and uniqueness of Kähler-Ricci solitons , 2002 .

[60]  Some numerical results in complex differential geometry , 2005, math/0512625.

[61]  M. Jonsson,et al.  Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs , 2015, 1504.06568.

[62]  R. Berman K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics , 2012, 1205.6214.