Anticanonically balanced metrics and the Hilbert-Mumford criterion for the $\delta_m$-invariant of Fujita-Odaka
暂无分享,去创建一个
[1] T. Mabuchi. Kähler-Einstein metrics for manifolds with nonvanishing Futaki character , 2001 .
[2] Curvature of vector bundles associated to holomorphic fibrations , 2005, math/0511225.
[3] Coupled complex Monge-Ampère equations on Fano horosymmetric manifolds , 2018, 1812.07218.
[4] Tomoyuki Hisamoto. Mabuchi's soliton metric and relative D-stability , 2019, American Journal of Mathematics.
[5] B. Berndtsson. A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry , 2013, 1303.4975.
[6] Jakob Hultgren. Coupled Kähler–Ricci solitons on toric Fano manifolds , 2017, Analysis & PDE.
[7] Gábor Székelyhidi. An Introduction to Extremal Kahler Metrics , 2014 .
[8] R. Dervan. Uniform stability of twisted constant scalar curvature K\"ahler metrics , 2014, 1412.0648.
[9] Satoshi X. Nakamura. Deformation for coupled Kähler–Einstein metrics , 2021 .
[10] R. Berman,et al. Convexity of the extended K-energy and the large time behavior of the weak Calabi flow , 2015, 1510.01260.
[11] N. Yotsutani. Facets of secondary polytopes and Chow stability of toric varieties , 2013, 1306.4504.
[12] Kento Fujita. A valuative criterion for uniform K-stability of ℚ-Fano varieties , 2019, Journal für die reine und angewandte Mathematik (Crelles Journal).
[13] P. Newstead. Moduli Spaces and Vector Bundles: Geometric Invariant Theory , 2009 .
[14] David Witt Nyström,et al. Coupled Kähler–Einstein Metrics , 2016 .
[15] S. Yau. On The Ricci Curvature of a Compact Kahler Manifold and the Complex Monge-Ampere Equation, I* , 1978 .
[16] Y. Hashimoto. Mapping properties of the Hilbert and Fubini–Study maps in Kähler geometry , 2017, 1705.11025.
[17] M. Jonsson,et al. Thresholds, valuations, and K-stability , 2017, Advances in Mathematics.
[18] M. Jonsson,et al. Uniform K-stability and asymptotics of energy functionals in Kähler geometry , 2016, Journal of the European Mathematical Society.
[19] Julien Keller,et al. About J-flow, J-balanced metrics, uniform J-stability and K-stability , 2017, 1705.02000.
[20] Kewei Zhang. A quantization proof of the uniform Yau-Tian-Donaldson conjecture , 2021 .
[21] Ono. A necessary condition for Chow semistability of polarized toric manifolds , 2011 .
[22] Xu Chen,et al. Special test configurations and $K$-stability of Fano varieties , 2011, 1111.5398.
[23] Kento Fujita. Optimal bounds for the volumes of Kähler-Einstein Fano manifolds , 2015, 1508.04578.
[24] Tomoyuki Hisamoto. Stability and coercivity for toric polarizations , 2016, 1610.07998.
[25] Yingying Zhang,et al. Residue formula for an obstruction to coupled Kähler–Einstein metrics , 2019, Journal of the Mathematical Society of Japan.
[26] Chi Li. G-uniform stability and Kähler-Einstein metrics on Fano varieties , 2019 .
[27] S. Yau,et al. Asymptotic Chow polystability in Kähler geometry , 2012 .
[28] Yi-jun Yao. Mabuchi Metrics and Relative Ding Stability of Toric Fano Varieties , 2017 .
[29] Shou-wu Zhang. Heights and reductions of semi-stable varieties , 1996 .
[30] M. Jonsson,et al. A variational approach to the Yau–Tian–Donaldson conjecture , 2015, Journal of the American Mathematical Society.
[31] Ryosuke Takahashi. Asymptotic stability for Kähler–Ricci solitons , 2015, 1503.05668.
[32] Kewei Zhang,et al. Basis divisors and balanced metrics , 2020, Journal für die reine und angewandte Mathematik.
[33] R. Berman,et al. Complex optimal transport and the pluripotential theory of K\"ahler-Ricci solitons , 2014, 1401.8264.
[34] D. Phong,et al. Stability, energy functionals, and Kahler-Einstein metrics , 2002, math/0203254.
[35] Hua Luo. Geometric criterion for Gieseker-Mumford stability of polarized manifolds , 1998 .
[36] Gábor Székelyhidi. Extremal metrics and K‐stability , 2004, math/0410401.
[37] S. Donaldson. Scalar Curvature and Projective Embeddings, I , 2001 .
[38] Xinghua Gao,et al. Symmetric Spaces , 2014 .
[39] Lower bounds on the Calabi functional , 2005, math/0506501.
[40] Y. Odaka,et al. On the K-stability of Fano varieties and anticanonical divisors , 2016, Tohoku Mathematical Journal.
[41] A. Futaki. ASYMPTOTIC CHOW SEMI-STABILITY AND INTEGRAL INVARIANTS , 2004 .
[42] J. Duistermaat,et al. On the variation in the cohomology of the symplectic form of the reduced phase space , 1982 .
[43] R. Lazarsfeld. Classical setting : line bundles and linear series , 2004 .
[44] Xu-jia Wang,et al. Kahler-Ricci solitons on toric manifolds with positive first Chern class , 2004 .
[45] A. Futaki. An obstruction to the existence of Einstein Kähler metrics , 1983 .
[46] Robert Lazarsfeld,et al. Positivity in algebraic geometry , 2004 .
[47] S. Donaldson. Scalar Curvature and Stability of Toric Varieties , 2002 .
[48] S. Bando,et al. Uniqueness of Einstein Kähler Metrics Modulo Connected Group Actions , 1987 .
[49] Y. Hashimoto. Quantisation of Extremal Kähler Metrics , 2015, 1508.02643.
[50] Motivated by the proposed study of coupled Kähler-Einstein metrics by Hultgren and Witt Nyström , 2019 .
[51] D. Rall,et al. Thresholds? , 1978, Environmental health perspectives.
[52] Anticanonically balanced metrics on Fano manifolds , 2020, Annals of Global Analysis and Geometry.
[53] R. Berman,et al. A variational approach to complex Monge-Ampère equations , 2009, 0907.4490.
[54] A study of the Hilbert-Mumford criterion for the stability of projective varieties , 2004, math/0412519.
[55] Vamsi Pingali. Existence of coupled K\"ahler-Einstein metrics using the continuity method , 2016, 1609.02047.
[56] N. Chriss,et al. Representation theory and complex geometry , 1997 .
[57] Xiaohua Zhu. Kähler-Ricci soliton typed equations on compact complex manifolds withC1(M) > 0 , 2000 .
[58] Vamsi Pingali,et al. On coupled constant scalar curvature Kähler metrics , 2019, Journal of Symplectic Geometry.
[59] G. Tian,et al. A new holomorphic invariant and uniqueness of Kähler-Ricci solitons , 2002 .
[60] Some numerical results in complex differential geometry , 2005, math/0512625.
[61] M. Jonsson,et al. Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs , 2015, 1504.06568.
[62] R. Berman. K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics , 2012, 1205.6214.