Influence of Cycling onto Electrolyte Distribution Inside a Silver-Based Gas Diffusion Electrode for Zn-Air Batteries

[1]  A. Latz,et al.  Lattice Boltzmann simulation of liquid water transport in gas diffusion layers of proton exchange membrane fuel cells: Parametric studies on capillary hysteresis , 2022, Journal of Power Sources.

[2]  I. Manke,et al.  Investigating the electrowetting of silver‐based gas‐diffusion electrodes during oxygen reduction reaction with electrochemical and optical methods , 2022, Electrochemical Science Advances.

[3]  K. Friedrich,et al.  Wetting Behavior of Aprotic Li–Air Battery Electrolytes , 2021, Advanced Materials Interfaces.

[4]  K. Friedrich,et al.  A Segmented Cell Measuring Technique for Current Distribution Measurements in Batteries, Exemplified by the Operando Investigation of a Zn-Air Battery , 2021, Journal of the Electrochemical Society.

[5]  N. Wagner,et al.  Evaluation of electrochemical impedance spectra of - batteries (Li-air/Zn-air) for aqueous electrolytes , 2021, Electrochimica Acta.

[6]  F. G. L. Parlane,et al.  Gas diffusion electrodes and membranes for CO2 reduction electrolysers , 2021, Nature Reviews Materials.

[7]  D. Franzen,et al.  Revealing the degree and impact of inhomogeneous electrolyte distributions on silver based gas diffusion electrodes , 2021 .

[8]  K. Friedrich,et al.  Influence of Organic Additives for Zinc-Air Batteries on Cathode Stability and Performance , 2021 .

[9]  K. Friedrich,et al.  Degradation study on tin- and bismuth-based gas-diffusion electrodes during electrochemical CO2 reduction in highly alkaline media , 2021 .

[10]  D. Franzen,et al.  Experimental and Model‐Based Analysis of Electrolyte Intrusion Depth in Silver‐Based Gas Diffusion Electrodes , 2021 .

[11]  J. A. Blázquez,et al.  High performance secondary zinc-air/silver hybrid battery , 2020 .

[12]  I. Manke,et al.  Influence of binder content in silver-based gas diffusion electrodes on pore system and electrochemical performance , 2019, Journal of Applied Electrochemistry.

[13]  M. Grdeń Impedance study on the capacitance of silver electrode oxidised in alkaline electrolyte , 2017, Journal of Solid State Electrochemistry.

[14]  K. Friedrich,et al.  Highly Stable Carbon‐Free Ag/Co3O4‐Cathodes for Lithium‐Air Batteries: Electrochemical and Structural Investigations , 2015 .

[15]  W. Bessler,et al.  Reaction and transport in Ag/Ag2O gas diffusion electrodes of aqueous Li–O2 batteries: Experiments and modeling , 2014 .

[16]  K. S. Dhathathreyan,et al.  Bifunctional electrocatalyst for oxygen/air electrodes , 2014 .

[17]  Hiroyuki Uchida,et al.  Investigation of the effect of pore diameter of gas diffusion layers on cold start behavior and cell performance of polymer electrolyte membrane fuel cells , 2013 .

[18]  F. Büchi,et al.  Saturation Dependent Effective Transport Properties of PEFC Gas Diffusion Layers , 2012 .

[19]  M. Fowler,et al.  Wettability and capillary behavior of fibrous gas diffusion media for polymer electrolyte membrane fuel cells , 2009 .

[20]  Characterization of internal wetting in polymer electrolyte membrane gas diffusion layers , 2009 .

[21]  D. Tudela Silver(II) Oxide or Silver(I,III) Oxide?. , 2008 .

[22]  Chao-Yang Wang,et al.  Pore-network modeling of liquid water transport in gas diffusion layer of a polymer electrolyte fuel cell , 2007 .

[23]  J. St-Pierre,et al.  A microfluidic approach for measuring capillary pressure in PEMFC gas diffusion layers , 2007 .

[24]  Mark Pritzker,et al.  Capillary pressure and hydrophilic porosity in gas diffusion layers for polymer electrolyte fuel cells , 2006 .

[25]  M. Watanabe,et al.  Preparation of highly dispersed SiO2 and Pt particles in Nafion®112 for self-humidifying electrolyte membranes in fuel cells , 2006 .

[26]  Hiroyuki Uchida,et al.  Polymer Electrolyte Membranes Incorporated with Nanometer-Size Particles of Pt and/or Metal-Oxides: Experimental Analysis of the Self-Humidification and Suppression of Gas-Crossover in Fuel Cells , 1998 .

[27]  F. E. Bartell,et al.  Reproducible Contact Angles on Reproducible Metal Surfaces. I. Contact Angles of Water against Silver and Gold1 , 1942 .