Quantum Topological Error Correction Codes: The Classical-to-Quantum Isomorphism Perspective

We conceive and investigate the family of classical topological error correction codes (TECCs), which have the bits of a codeword arranged in a lattice structure. We then present the classical-to-quantum isomorphism to pave the way for constructing their quantum dual pairs, namely, the quantum TECCs (QTECCs). Finally, we characterize the performance of QTECCs in the face of the quantum depolarizing channel in terms of both the quantum-bit error rate (QBER) and fidelity. Specifically, from our simulation results, the threshold probability of the QBER curves for the color codes, rotated-surface codes, surface codes, and toric codes are given by <inline-formula> <tex-math notation="LaTeX">$1.8 \times 10^{-2}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$1.3 \times 10^{-2}$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$6.3 \times 10^{-2}$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$6.8 \times 10^{-2}$ </tex-math></inline-formula>, respectively. Furthermore, we also demonstrate that we can achieve the benefit of fidelity improvement at the minimum fidelity of 0.94, 0.97, and 0.99 by employing the 1/7-rate color code, the 1/9-rate rotated-surface code, and 1/13-rate surface code, respectively.

[1]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[2]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[3]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[4]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[5]  J. Tillich,et al.  Constructions and performance of classes of quantum LDPC codes , 2005, quant-ph/0502086.

[6]  Paul Adrien Maurice Dirac,et al.  A new notation for quantum mechanics , 1939, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[8]  Alain Couvreur,et al.  A construction of quantum LDPC codes from Cayley graphs , 2011, ISIT.

[9]  H. Bombin,et al.  Homological error correction: Classical and quantum codes , 2006, quant-ph/0605094.

[10]  T. Beth,et al.  Quantum BCH Codes , 1999, quant-ph/9910060.

[11]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[12]  Michael S. Postol A Proposed Quantum Low Density Parity Check Code , 2001, quant-ph/0108131.

[13]  Lajos Hanzo,et al.  The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure , 2015, IEEE Access.

[14]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[15]  Ekert,et al.  Quantum Error Correction for Communication. , 1996 .

[16]  Matthew B. Hastings,et al.  Homological product codes , 2013, STOC.

[17]  Jean-Pierre Tillich,et al.  Description of a quantum convolutional code. , 2003, Physical review letters.

[18]  Leonid P. Pryadko,et al.  Improved quantum hypergraph-product LDPC codes , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[19]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[20]  Gilles Zémor,et al.  Quantum LDPC codes with positive rate and minimum distance proportional to n½ , 2009, ISIT.

[21]  Gilles Zémor,et al.  Quantum LDPC Codes With Positive Rate and Minimum Distance Proportional to the Square Root of the Blocklength , 2009, IEEE Transactions on Information Theory.

[22]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[23]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[24]  Jean-Pierre Tillich,et al.  A class of quantum LDPC codes: construction and performances under iterative decoding , 2007, 2007 IEEE International Symposium on Information Theory.

[25]  David Poulin,et al.  Quantum Serial Turbo Codes , 2009, IEEE Transactions on Information Theory.

[26]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[27]  Soon Xin Ng,et al.  Fifteen Years of Quantum LDPC Coding and Improved Decoding Strategies , 2015, IEEE Access.

[28]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[29]  E. Gilbert A comparison of signalling alphabets , 1952 .

[30]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[31]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[32]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[33]  Nicolas Delfosse,et al.  Tradeoffs for reliable quantum information storage in surface codes and color codes , 2013, 2013 IEEE International Symposium on Information Theory.

[34]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[35]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[36]  N. Sloane,et al.  Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.

[37]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[38]  Lajos Hanzo,et al.  Quantum Coding Bounds and a Closed-Form Approximation of the Minimum Distance Versus Quantum Coding Rate , 2017, IEEE Access.

[39]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[40]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[41]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[42]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[43]  Gilles Zémor,et al.  On Cayley Graphs, Surface Codes, and the Limits of Homological Coding for Quantum Error Correction , 2009, IWCC.

[44]  T. H. Liew,et al.  Turbo Coding, Turbo Equalisation and Space-Time Coding: EXIT-Chart-Aided Near-Capacity Designs for Wireless Channels , 2011 .

[45]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.