The levitation and driving performance of a contact-free manipulation device actuated by ultrasonic energy

[1]  Weidong Diao,et al.  A miniature standing wave linear ultrasonic motor , 2021, Sensors and Actuators A: Physical.

[2]  Jianzhong Fu,et al.  Current state of magnetic levitation and its applications in polymers: A review , 2021 .

[3]  K. Feng,et al.  Experimental and numerical investigation of a self-adapting non-contact ultrasonic motor , 2021 .

[4]  Bo Zhang,et al.  Vortex-field acoustic levitation in tubes , 2020 .

[5]  A. Dasgupta,et al.  Generation of circumferential harmonic travelling waves on thin circular plates , 2020 .

[6]  Asier Marzo,et al.  Acoustic levitation in mid-air: Recent advances, challenges, and future perspectives , 2020 .

[7]  M. Andrade,et al.  Translational and rotational resonance frequencies of a disk in a single-axis acoustic levitator , 2020 .

[8]  M. Huang,et al.  Running Performance of a Squeeze Film Air Bearing with Flexure Pivot Tilting Pad , 2020 .

[9]  J. Adamowski,et al.  Contactless pick-and-place of millimetric objects using inverted near-field acoustic levitation , 2020, Applied Physics Letters.

[10]  Muhammad Umar Masood,et al.  Surface roughness effects on electromechanical performance of RF-MEMS capacitive switches , 2020 .

[11]  I. Bucher,et al.  A Contactless Stage Based on Near-Field Acoustic Levitation for Object Handling and Positioning—Concept, Design, Modeling, and Experiments , 2019, IEEE/ASME Transactions on Mechatronics.

[12]  M. Aoyagi,et al.  Development of rotary-type noncontact-synchronous ultrasonic motor , 2019, Japanese Journal of Applied Physics.

[13]  Jianghong Zhao,et al.  Gap flow with circumferential velocity in annular skirt of vortex gripper , 2019, Precision Engineering.

[14]  Weiqi Wang,et al.  Acoustic radiation simulation and pre-stress effect on compact acoustic levitation platform , 2019, Modern Physics Letters B.

[15]  Zhi-Yang Guo,et al.  Numerical and experimental study on the influence of material characteristics on the levitation performance of squeeze-film air bearing , 2018, Tribology International.

[16]  Wenjun Li,et al.  Effect of Surface Grooves on the Characteristics of Noncontact Transportation Using Near-Field Acoustic Levitation , 2018, Tribology Transactions.

[17]  I. Bucher,et al.  Realization of an automatic, contactless, acoustic levitation motor via degenerate mode excitation and autoresonance , 2018, Sensors and Actuators A: Physical.

[18]  Z. Huang,et al.  Integrated Numerical Analysis on the Performance of a Hybrid Gas-Lubricated Bearing Utilizing Near-Field Acoustic Levitation , 2018 .

[19]  Zongquan Deng,et al.  Design and experimental study on an ultrasonic bearing with bidirectional carrying capacity , 2018 .

[20]  Bin Wei,et al.  Theoretical investigation and prototype design for non-parallel squeeze film movement platform driven by standing waves , 2018 .

[21]  P. Guo,et al.  An active non-contact journal bearing with bi-directional driving capability utilizing coupled resonant mode , 2018 .

[22]  Bruce W. Drinkwater,et al.  Ultraino: An Open Phased-Array System for Narrowband Airborne Ultrasound Transmission , 2018, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[23]  Kai Feng,et al.  A novel squeeze-film air bearing with flexure pivot-tilting pads: Numerical analysis and measurement , 2017 .

[24]  Kai Feng,et al.  Modelling and experimental study on the influence of surface grooves on near-field acoustic levitation , 2017 .

[25]  Bruce W. Drinkwater,et al.  Dynamics of levitated objects in acoustic vortex fields , 2017, Scientific Reports.

[26]  J. Loudet,et al.  Behaviors of ellipsoidal micro-particles within a two-beam optical levitator , 2017 .

[27]  Julio C Adamowski,et al.  Acoustic levitation of an object larger than the acoustic wavelength. , 2017, The Journal of the Acoustical Society of America.

[28]  I. Melikhov Asymptotic solution of ultrasonic near-field levitation problem , 2017 .

[29]  H. Flashner,et al.  Modeling and closed loop control of near-field acoustically levitated objects , 2016, 1605.04541.

[30]  Rafał Gawarkiewicz,et al.  Acoustic journal bearing – Performance under various load and speed conditions , 2016 .

[31]  Yidong Xia,et al.  Quantum spin Hall insulator phase in monolayer WTe2 by uniaxial strain , 2016 .

[32]  Izhak Bucher,et al.  On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies , 2015 .

[33]  T. Kagawa,et al.  Basic investigation of a contactless air conveyor for flat products using viscous traction , 2015, 2015 International Conference on Fluid Power and Mechatronics (FPM).

[34]  Vesna Trifunovič Dragišić Silicon Solar Wafers: Quality Control and Improving the Mechanical Properties ☆ , 2015 .

[35]  N. Pérez,et al.  Analysis of a Non-resonant Ultrasonic Levitation Device , 2015 .

[36]  W. Zhai,et al.  The near-field acoustic levitation of high-mass rotors. , 2014, The Review of scientific instruments.

[37]  W. Rhim,et al.  Materials properties measurements and particle beam interactions studies using electrostatic levitation , 2014 .

[38]  Guojun Liu,et al.  Research on Levitation Coupled with Standing Wave Levitation and Electromagnetic Levitation , 2013 .

[39]  Shigeka Yoshimoto,et al.  Vertical attractive force generated in a noncontact chuck using ultrasonic vibration , 2013 .

[40]  Xiaoyang Jiao,et al.  The near-field acoustic levitation for spheres by transducer with concave spherical radiating surface , 2013 .

[41]  Jia Bing,et al.  Study on Non-contact Piezoelectric Actuators With Spherical Rotors , 2012 .

[42]  J. Bing,et al.  Study on Transient Properties of Levitated Object in Near-Field Acoustic Levitation , 2011 .

[43]  Hairong Zheng,et al.  Computation of the acoustic radiation force using the finite-difference time-domain method. , 2010, The Journal of the Acoustical Society of America.

[44]  Yuan Zhang,et al.  Study on the Conditions of Near-Field Acoustic Levitation , 2010 .

[45]  M. Takasaki,et al.  Non-contact ultrasonic support of minute objects , 2010 .

[46]  Su Zhao,et al.  Design and experimental investigations of high power piezoelectric transducers for a novel squeeze film journal bearing , 2009, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[47]  K. Nakamura,et al.  A self-running standing wave-type bidirectional slider for the ultrasonically levitated thin linear stage , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[48]  W. J. Xie,et al.  Acoustic method for levitation of small living animals , 2006 .

[49]  Alain Delchambre,et al.  Non-contact handling in microassembly: Acoustical levitation , 2005 .

[50]  S. Ueha,et al.  An ultrasonically levitated non-contact sliding table with the traveling vibrations on fine-ceramic beams , 2005, IEEE Ultrasonics Symposium, 2005..

[51]  Xiaojing Zheng,et al.  Effect of spring non-linearity on dynamic stability of a controlled maglev vehicle and its guideway system , 2005 .

[52]  K. Matsuda,et al.  Theoretical and experimental examination of near-field acoustic levitation. , 2002, The Journal of the Acoustical Society of America.

[53]  Giuseppe Pesce,et al.  Measurements of optical tweezers stiffness , 2001, European Conference on Biomedical Optics.

[54]  Sadayuki Ueha,et al.  A Multi-Transducer Near Field Acoustic Levitation System for Noncontact Transportation of Large-Sized Planar Objects , 2000 .

[55]  Gunther Reinhart,et al.  Non-Contact Handling Using High-Intensity Ultrasonics , 2000 .

[56]  Sadayuki Ueha,et al.  A noncontact ultrasonic motor with the rotor levitated by axial acoustic viscous force , 1999 .

[57]  Sadayuki Ueha,et al.  Transporting objects without contact using flexural traveling waves , 1998 .

[58]  Adel F. Sarofim,et al.  The electrodynamic chamber: a tool for studying high temperature kinetics involving liquid and solid particles , 1991 .

[59]  T. K. Saksena,et al.  Acoustic levitation and its application in estimation of high power sound field , 1984 .

[60]  R. R. Whymark,et al.  Acoustic field positioning for containerless processing , 1975 .

[61]  A. Kundt Ueber eine neue Art akustischer Staubfiguren und über die Anwendung derselben zur Bestimmung der Schallgeschwindigkeit in festen Körpern und Gasen , 1866 .