Dynamic hysteresis based modeling of piezoelectric actuators

Piezoelectric actuators are popularly applied as actuators in high precision systems due to their small displacement resolution, fast response and simple construction. However, the hysteresis nonlinear behavior limits the dynamic modeling and tracking control of piezoelectric actuators. This paper studies a dynamic model of a moving stage driven by piezoelectric stack actuator. The Bouc-Wen model is introduced and analyzed to express the nonlinear hysteresis term. Two triangular actuating voltages with frequency of 1 Hz and amplitudes of 80 V and 90 V are applied to drive the piezoelectric stack actuator. The results demonstrate the existence of the hysteresis phenomenon between the input voltage and the output displacement of the piezoelectric stack actuator, and validate the correctness of the model.

[1]  Ying-Shieh Kung,et al.  A comparison of fitness functions for the identification of a piezoelectric hysteretic actuator based on the real-coded genetic algorithm , 2006 .

[2]  D. Croft,et al.  Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[3]  B. D. Coleman,et al.  A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials , 1986 .

[4]  Mohammed Ismail,et al.  The Hysteresis Bouc-Wen Model, a Survey , 2009 .

[5]  Laura Menini,et al.  Active vibration control of an elastic plate using multiple piezoelectric sensors and actuators , 2003, Simul. Model. Pract. Theory.

[6]  Armen Der Kiureghian,et al.  Generalized Bouc-Wen model for highly asymmetric hysteresis , 2006 .

[7]  Tathagata Ray,et al.  Enhanced Smooth Hysteretic Model with Degrading Properties , 2014 .

[8]  José Rodellar,et al.  Analytical Characterization of Hysteresis Loops Described by the Bouc-Wen Model , 2006 .

[9]  S. T. Mau,et al.  Systems Identification of Degrading Hysteretic Restoring Forces , 1988 .

[10]  Y. Wen Method for Random Vibration of Hysteretic Systems , 1976 .

[11]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[12]  Xiongbiao Chen,et al.  Novel models for one-sided hysteresis of piezoelectric actuators , 2012 .

[13]  Limin Zhu,et al.  High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model. , 2010, The Review of scientific instruments.

[14]  Rosario Ceravolo,et al.  Instantaneous Identification of Bouc-Wen-Type Hysteretic Systems from Seismic Response Data , 2007 .

[15]  Arturo Rodriguez,et al.  Analytical study of the influence of the normalized Bouc-Wen model parameters on hysteresis loops , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[16]  Zhang Yigong,et al.  Nonlinear structural identification using extended kalman filter , 1994 .

[17]  T. Low,et al.  Modeling of a three-layer piezoelectric bimorph beam with hysteresis , 1995 .

[18]  T. T. Baber,et al.  Modeling General Hysteresis Behavior and Random Vibration Application , 1986 .

[19]  Meiying Ye,et al.  Parameter estimation of the Bouc–Wen hysteresis model using particle swarm optimization , 2007 .

[20]  Urban Simu,et al.  Evaluation of a monolithic piezoelectric drive unit for a miniature robot , 2002 .

[21]  Ranjan Ganguli,et al.  Modeling and compensation of piezoceramic actuator hysteresis for helicopter vibration control , 2007 .

[22]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .