Quantum Reactivity: An Indicator of Quantum Correlation

Geometry is often a valuable guide to complex problems in physics. In this paper, we introduce a novel geometric quantity called quantum reactivity (QR) to probe quantum correlations in higher-dimensional quantum systems. Much like quantum discord, QR is not a measure of quantum entanglement but can be useful in quantum information processes where a notion of quantum correlation in higher dimensions is needed. Both quantum discord and QR are extendable to an arbitrarily large number of qubits; however, unlike discord, QR satisfies the invariance under unitary operations. Our approach parallels Schumacher’s singlet state triangle inequality, which used an information geometry-based entropic distance. We use a generalization of information distance to area, volume, and higher-dimensional volumes and then use these to define a quantity that we call QR, which is the familiar ratio of surface area to volume. We examine a spectrum of multipartite states (Werner, W, GHZ, randomly generated density matrices, etc.) and demonstrate that QR can provide an ordering of these quantum states as to their degree of quantum correlation.

[1]  C. Rajski,et al.  A Metric Space of Discrete Probability Distributions , 1961, Inf. Control..

[2]  V. Rokhlin LECTURES ON THE ENTROPY THEORY OF MEASURE-PRESERVING TRANSFORMATIONS , 1967 .

[3]  W. H. Zurek,et al.  Thermodynamic cost of computation, algorithmic complexity and the information metric , 1989, Nature.

[4]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[5]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[6]  Schumacher,et al.  Information and quantum nonseparability. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[7]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[8]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[9]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[10]  K. Jacobs,et al.  Statistical Inference, Distinguishability of Quantum States, And Quantum Entanglement , 1997, quant-ph/9703025.

[11]  R. Cleve,et al.  SUBSTITUTING QUANTUM ENTANGLEMENT FOR COMMUNICATION , 1997, quant-ph/9704026.

[12]  J. Wheeler Information, physics, quantum: the search for links , 1999 .

[13]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[14]  H. Weinfurter,et al.  Observation of three-photon Greenberger-Horne-Zeilinger entanglement , 1998, quant-ph/9810035.

[15]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[16]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[17]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  H. Sommers,et al.  Statistical properties of random density matrices , 2004, quant-ph/0405031.

[19]  M. Horodecki,et al.  Local versus nonlocal information in quantum-information theory: Formalism and phenomena , 2004, quant-ph/0410090.

[20]  N. J. Cerf,et al.  Multipartite nonlocality without entanglement in many dimensions , 2006 .

[21]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[22]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[23]  B. Lanyon,et al.  Experimental quantum computing without entanglement. , 2008, Physical review letters.

[24]  A. Rau,et al.  Quantum discord for two-qubit X states , 2010, 1002.3429.

[25]  Gernot Alber,et al.  Erratum: Quantum discord for two-qubit X states [Phys. Rev. A 81, 042105 (2010)] , 2010 .

[26]  V. Vedral Ju n 20 09 The elusive source of quantum effectiveness , 2009 .

[27]  M. S. Sarandy,et al.  Global quantum discord in multipartite systems , 2011, 1105.2548.

[28]  John Preskill,et al.  Quantum computing and the entanglement frontier , 2012, 1203.5813.

[29]  Vlatko Vedral,et al.  Foundations of Quantum Discord , 2017, 1702.01327.

[30]  Thiago R. de Oliveira,et al.  Quantum Correlations in Multipartite Quantum Systems , 2017, 1706.03101.

[31]  Warner A. Miller,et al.  Quantum information geometry in the space of measurements , 2018, Commercial + Scientific Sensing and Imaging.

[32]  Paul M. Alsing,et al.  Geometric measures of information for quantum state characterization , 2019, Annals of Mathematical Sciences and Applications.

[33]  Paul M. Alsing,et al.  Properties of quantum reactivity for a multipartite state , 2019, Defense + Commercial Sensing.