Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli

A significant obstacle in training predictive cell models is the lack of integrated data sources. We develop semi-supervised normalization pipelines and perform experimental characterization (growth, transcriptional, proteome) to create Ecomics, a consistent, quality-controlled multi-omics compendium for Escherichia coli with cohesive meta-data information. We then use this resource to train a multi-scale model that integrates four omics layers to predict genome-wide concentrations and growth dynamics. The genetic and environmental ontology reconstructed from the omics data is substantially different and complementary to the genetic and chemical ontologies. The integration of different layers confers an incremental increase in the prediction performance, as does the information about the known gene regulatory and protein-protein interactions. The predictive performance of the model ranges from 0.54 to 0.87 for the various omics layers, which far exceeds various baselines. This work provides an integrative framework of omics-driven predictive modelling that is broadly applicable to guide biological discovery.

[1]  K. Arunasri,et al.  Effect of Simulated Microgravity on E. coli K12 MG1655 Growth and Gene Expression , 2013, PloS one.

[2]  B. Tjaden,et al.  Computational analysis of bacterial RNA-Seq data , 2013, Nucleic acids research.

[3]  Scott J. Hultgren,et al.  Functional Genomic Studies of Uropathogenic Escherichia coli and Host Urothelial Cells when Intracellular Bacterial Communities Are Assembled* , 2007, Journal of Biological Chemistry.

[4]  Damian Szklarczyk,et al.  The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored , 2010, Nucleic Acids Res..

[5]  Kazuya Morikawa,et al.  Proteomic Analyses of Nucleoid-Associated Proteins in Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus , 2011, PloS one.

[6]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[7]  Hilal Taymaz-Nikerel,et al.  Development and application of a differential method for reliable metabolome analysis in Escherichia coli. , 2009, Analytical biochemistry.

[8]  Arkady B Khodursky,et al.  The association of DNA damage response and nucleotide level modulation with the antibacterial mechanism of the anti-folate drug Trimethoprim , 2011, BMC Genomics.

[9]  Antony J. Williams,et al.  ChemSpider:: An Online Chemical Information Resource , 2010 .

[10]  S. Harcum,et al.  Transcriptome profiles for high-cell-density recombinant and wild-type Escherichia coli. , 2005, Biotechnology and bioengineering.

[11]  David S. Wishart,et al.  HMDB 3.0—The Human Metabolome Database in 2013 , 2012, Nucleic Acids Res..

[12]  E W Hickey,et al.  Low-pH-induced effects on patterns of protein synthesis and on internal pH in Escherichia coli and Salmonella typhimurium , 1990, Applied and environmental microbiology.

[13]  Ilias Tagkopoulos,et al.  An integrative, multi-scale, genome-wide model reveals the phenotypic landscape of Escherichia coli , 2014, Molecular systems biology.

[14]  Hideaki Sugawara,et al.  The Sequence Read Archive , 2010, Nucleic Acids Res..

[15]  Christopher A. Elkins,et al.  Mammalian Steroid Hormones Are Substrates for the Major RND- and MFS-Type Tripartite Multidrug Efflux Pumps of Escherichia coli , 2006, Journal of bacteriology.

[16]  Andrew R. Jones,et al.  ProteomeXchange provides globally co-ordinated proteomics data submission and dissemination , 2014, Nature Biotechnology.

[17]  Fabio Rinaldi,et al.  RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond , 2015, Nucleic Acids Res..

[18]  K. Valgepea,et al.  Comparison and applications of label-free absolute proteome quantification methods on Escherichia coli. , 2012, Journal of proteomics.

[19]  Shun-ichi Amari,et al.  Backpropagation and stochastic gradient descent method , 1993, Neurocomputing.

[20]  Peter Uetz,et al.  Protein-protein Interaction Networks of E. coli and S. cerevisiae are similar , 2014, Scientific Reports.

[21]  Masaru Tomita,et al.  Metabolic regulation analysis of wild-type and arcA mutant Escherichia coli under nitrate conditions using different levels of omics data. , 2012, Molecular bioSystems.

[22]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[23]  John Quackenbush Microarray data normalization and transformation , 2002, Nature Genetics.

[24]  Martin T. Hagan,et al.  Neural network design , 1995 .

[25]  Pineda,et al.  Generalization of back-propagation to recurrent neural networks. , 1987, Physical review letters.

[26]  Sergio Contrino,et al.  ArrayExpress—a public repository for microarray gene expression data at the EBI , 2004, Nucleic Acids Res..

[27]  Erin M. Conlon,et al.  Rapid Changes in Gene Expression Dynamics in Response to Superoxide Reveal SoxRS-Dependent and Independent Transcriptional Networks , 2007, PloS one.

[28]  Derek N. Macklin,et al.  The future of whole-cell modeling. , 2014, Current opinion in biotechnology.

[29]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[30]  Juancarlos Chan,et al.  Gene Ontology Consortium: going forward , 2014, Nucleic Acids Res..

[31]  Masaru Tomita,et al.  E-CELL: software environment for whole-cell simulation , 1999, Bioinform..

[32]  L. Jarboe,et al.  Transcriptomic Analysis of Carboxylic Acid Challenge in Escherichia coli: Beyond Membrane Damage , 2014, PloS one.

[33]  M. Vidal,et al.  Integrating 'omic' information: a bridge between genomics and systems biology. , 2003, Trends in genetics : TIG.

[34]  Chase L. Beisel,et al.  Base pairing small RNAs and their roles in global regulatory networks. , 2010, FEMS microbiology reviews.

[35]  Claudia Sissi,et al.  Effects of magnesium and related divalent metal ions in topoisomerase structure and function , 2009, Nucleic acids research.

[36]  F. Neidhardt,et al.  Physiology of the bacterial cell : a molecular approach , 1990 .

[37]  Jay D. Keasling,et al.  Functional Genomic Study of Exogenous n-Butanol Stress in Escherichia coli , 2010, Applied and Environmental Microbiology.

[38]  Wolfgang R Hess,et al.  Heterocyst-specific transcription of NsiR1, a non-coding RNA encoded in a tandem array of direct repeats in cyanobacteria. , 2010, Journal of molecular biology.

[39]  Qun Ma,et al.  Cryptic prophages help bacteria cope with adverse environments , 2010, Nature communications.

[40]  Paul J. Choi,et al.  Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells , 2010, Science.

[41]  O. Maaløe,et al.  Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. , 1958, Journal of general microbiology.

[42]  M. Quadroni,et al.  Short- and long-term changes in proteome composition and kinetic properties in a culture of Escherichia coli during transition from glucose-excess to glucose-limited growth conditions in continuous culture and vice versa. , 2001, Environmental microbiology.

[43]  David W. Erickson,et al.  Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria , 2015, Molecular systems biology.

[44]  Tom Ross,et al.  Ion transport and osmotic adjustment in Escherichia coli in response to ionic and non-ionic osmotica. , 2009, Environmental microbiology.

[45]  Edward J. O'Brien,et al.  Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction , 2013, Molecular systems biology.

[46]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[47]  P. Pucci,et al.  Indole-3-acetic acid regulates the central metabolic pathways in Escherichia coli. , 2006, Microbiology.

[48]  J. Rabinowitz,et al.  Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli , 2009, Nature chemical biology.

[49]  Oleg Paliy,et al.  Genome-Wide Transcriptional Responses of Escherichia coli K-12 to Continuous Osmotic and Heat Stresses , 2008, Journal of bacteriology.

[50]  Liang Li,et al.  Genome-wide transcriptional responses of Escherichia coli to glyphosate, a potent inhibitor of the shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase. , 2013, Molecular bioSystems.

[51]  Adrienne E. Zweifel,et al.  EcoliWiki: a wiki-based community resource for Escherichia coli , 2011, Nucleic Acids Res..

[52]  Weiwen Zhang,et al.  Integrating multiple 'omics' analysis for microbial biology: application and methodologies. , 2010, Microbiology.

[53]  N. Price,et al.  Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis , 2010, Proceedings of the National Academy of Sciences.

[54]  Karsten Zengler,et al.  The transcription unit architecture of the Escherichia coli genome , 2009, Nature Biotechnology.

[55]  Robertson Craig,et al.  Open source system for analyzing, validating, and storing protein identification data. , 2004, Journal of proteome research.

[56]  J. Steibel,et al.  Identification of Carcass and Meat Quality QTL in an F2 Duroc × Pietrain Pig Resource Population Using Different Least-Squares Analysis Models , 2011, Front. Gene..

[57]  María Lluch-Senar,et al.  Bacterial transcriptomics: what is beyond the RNA horiz-ome? , 2011, Nature Reviews Microbiology.

[58]  David S. Guttman,et al.  Phylogenetic Characterization of Virulence and Resistance Phenotypes of Pseudomonas syringae , 2005, Applied and Environmental Microbiology.

[59]  Ilya Sutskever,et al.  Learning Recurrent Neural Networks with Hessian-Free Optimization , 2011, ICML.

[60]  Karsten Krug,et al.  Global dynamics of the Escherichia coli proteome and phosphoproteome during growth in minimal medium. , 2013, Journal of proteome research.

[61]  Jie Tan,et al.  Cross-platform normalization of microarray and RNA-seq data for machine learning applications , 2016, PeerJ.

[62]  A. Emili,et al.  Global Functional Atlas of Escherichia coli Encompassing Previously Uncharacterized Proteins , 2009, PLoS biology.

[63]  M. Reuss,et al.  Global Transcription and Metabolic Flux Analysis of Escherichia coli in Glucose-Limited Fed-Batch Cultivations , 2008, Applied and Environmental Microbiology.

[64]  Steven C. Huber,et al.  The Orphan Gene ybjN Conveys Pleiotropic Effects on Multicellular Behavior and Survival of Escherichia coli , 2011, PloS one.

[65]  S Letovsky,et al.  Genome-related datasets within the E. coli Genetic Stock Center database. , 1992, Nucleic acids research.

[66]  José M. Pérez-Donoso,et al.  DNA, Cell Wall and General Oxidative Damage Underlie the Tellurite/Cefotaxime Synergistic Effect in Escherichia coli , 2013, PloS one.

[67]  David A. Orlando,et al.  Revisiting Global Gene Expression Analysis , 2012, Cell.

[68]  Thomas K. Wood,et al.  Protein Translation and Cell Death: The Role of Rare tRNAs in Biofilm Formation and in Activating Dormant Phage Killer Genes , 2008, PloS one.

[69]  Evgeny Nudler,et al.  Termination Factor Rho and Its Cofactors NusA and NusG Silence Foreign DNA in E. coli , 2008, Science.

[70]  Yuichi Nakamura,et al.  Approximation of dynamical systems by continuous time recurrent neural networks , 1993, Neural Networks.

[71]  T. Wood,et al.  Identification of stress‐related proteins in Escherichia coli using the pollutant cis‐dichloroethylene , 2009, Journal of applied microbiology.

[72]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[73]  Guido Sanguinetti,et al.  Analysis of the bacterial response to Ru(CO)3Cl(Glycinate) (CORM-3) and the inactivated compound identifies the role played by the ruthenium compound and reveals sulfur-containing species as a major target of CORM-3 action. , 2013, Antioxidants & redox signaling.

[74]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[75]  H. Kurtz,et al.  Serine Hydroxamate and the Transcriptome of High Cell Density Recombinant Escherichia coli MG1655 , 2009, Applied biochemistry and biotechnology.

[76]  Kathleen Marchal,et al.  MAGIC: access portal to a cross-platform gene expression compendium for maize , 2014, Bioinform..

[77]  Editorial: ChemSpider--a tool for Natural Products research. , 2015, Natural product reports.

[78]  Kathryn J Boor,et al.  Bacterial Stress Responses: What Doesn't Kill Them Can Make Them Stronger , 2006, PLoS biology.

[79]  Maqc Consortium The MicroArray Quality Control ( MAQC )-II study of common practices for the development and validation of microarray-based predictive models , 2012 .

[80]  Stefania Balzan,et al.  Polyphenols from olive mill waste affect biofilm formation and motility in Escherichia coli K-12 , 2014, Microbial biotechnology.

[81]  StanberryLarissa,et al.  MOPED 2.5—An Integrated Multi-Omics Resource: Multi-Omics Profiling Expression Database Now Includes Transcriptomics Data , 2014 .

[82]  G. Friedlander,et al.  Regulation of gene expression by small non-coding RNAs: a quantitative view , 2007, Molecular systems biology.

[83]  Gordon K. Smyth,et al.  A comparison of background correction methods for two-colour microarrays , 2007, Bioinform..

[84]  Chrystala Constantinidou,et al.  The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations. , 2005, Microbiology.

[85]  U. Sauer,et al.  Multidimensional Optimality of Microbial Metabolism , 2012, Science.

[86]  E. Marcotte,et al.  Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation , 2007, Nature Biotechnology.

[87]  Dong-Eun Chang,et al.  Guanosine 3′,5′-bispyrophosphate coordinates global gene expression during glucose-lactose diauxie in Escherichia coli , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Karsten Zengler,et al.  The challenges of integrating multi-omic data sets. , 2010, Nature chemical biology.

[89]  Jonathan R. Karr,et al.  A Whole-Cell Computational Model Predicts Phenotype from Genotype , 2012, Cell.

[90]  Bernhard O. Palsson,et al.  BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions , 2010, BMC Bioinformatics.

[91]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[92]  H. Lehrach,et al.  A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome , 2005, Cell.

[93]  J. Keasling,et al.  Engineering dynamic pathway regulation using stress-response promoters , 2013, Nature Biotechnology.

[94]  J. Selbig,et al.  Metabolomic and transcriptomic stress response of Escherichia coli , 2010, Molecular systems biology.

[95]  T. Silhavy,et al.  Starvation for Different Nutrients in Escherichia coli Results in Differential Modulation of RpoS Levels and Stability , 2005, Journal of bacteriology.

[96]  Cheryl A. Nickerson,et al.  The Role of Sigma Factors in Regulating Bacterial Stress Responses and Pathogenesis , 2006 .

[97]  M. W Gardner,et al.  Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences , 1998 .

[98]  Geoffrey E. Hinton,et al.  Generating Text with Recurrent Neural Networks , 2011, ICML.

[99]  G. Storz,et al.  Regulatory RNAs in Bacteria , 2009, Cell.

[100]  D. Kell,et al.  The Kyoto Encyclopedia of Genes and Genomes—KEGG , 2000, Yeast.

[101]  William Stafford Noble,et al.  Computational and Statistical Analysis of Protein Mass Spectrometry Data , 2012, PLoS Comput. Biol..

[102]  J. Foster,et al.  Escherichia coli acid resistance: cAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes. , 2001, Microbiology.

[103]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[104]  Tom M. Conrad,et al.  Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models , 2010, Molecular systems biology.

[105]  T. Ideker,et al.  A gene ontology inferred from molecular networks , 2012, Nature Biotechnology.

[106]  D. Žgur-Bertok,et al.  Global transcriptional responses to the bacteriocin colicin M in Escherichia coli , 2013, BMC Microbiology.

[107]  N. Wingreen,et al.  A quantitative comparison of sRNA-based and protein-based gene regulation , 2008, Molecular systems biology.

[108]  Ying Zhang,et al.  HMDB: the Human Metabolome Database , 2007, Nucleic Acids Res..

[109]  Chiara Romualdi,et al.  COLOMBOS v3.0: leveraging gene expression compendia for cross-species analyses , 2015, Nucleic Acids Res..

[110]  Guido Sanguinetti,et al.  Carbon Monoxide-releasing Antibacterial Molecules Target Respiration and Global Transcriptional Regulators* , 2009, Journal of Biological Chemistry.

[111]  Fei Xu,et al.  Effect of Intracellular Expression of Antimicrobial Peptide LL-37 on Growth of Escherichia coli Strain TOP10 under Aerobic and Anaerobic Conditions , 2013, Antimicrobial Agents and Chemotherapy.

[112]  John W. Foster,et al.  Escherichia coli acid resistance: tales of an amateur acidophile , 2004, Nature Reviews Microbiology.

[113]  Keith R. Yamamoto,et al.  Biological Regulation and Development: Molecular Organization and Cell Function , 2013 .

[114]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[115]  Jeffrey D. Orth,et al.  In silico method for modelling metabolism and gene product expression at genome scale , 2012, Nature Communications.

[116]  Eugene Kolker,et al.  MOPED 2.5--an integrated multi-omics resource: multi-omics profiling expression database now includes transcriptomics data. , 2014, Omics : a journal of integrative biology.

[117]  James C Liao,et al.  A Global Regulatory Role of Gluconeogenic Genes in Escherichia coli Revealed by Transcriptome Network Analysis* , 2005, Journal of Biological Chemistry.

[118]  Julio Collado-Vides,et al.  RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more , 2012, Nucleic Acids Res..

[119]  S. Brantl,et al.  Small Regulatory RNAs (sRNAs): Key Players in Prokaryotic Metabolism, Stress Response, and Virulence , 2012 .

[120]  Catherine A. Biggs,et al.  Characterization of the extracellular polymeric substances produced by Escherichia coli using infrared spectroscopic, proteomic, and aggregation studies. , 2008, Biomacromolecules.

[121]  Laurel Cooper Common Reference Ontologies for Plant Biology: A Platform for Integrative Plant Genomics , 2014 .

[122]  Masaru Tomita,et al.  Global metabolic network reorganization by adaptive mutations allows fast growth of Escherichia coli on glycerol , 2014, Nature Communications.

[123]  Robert F. Goldberger,et al.  Molecular organization and cell function , 1980 .

[124]  R. Mahadevan,et al.  The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. , 2003, Metabolic engineering.

[125]  Peter D. Karp,et al.  EcoCyc: a comprehensive database resource for Escherichia coli , 2004, Nucleic Acids Res..

[126]  Sang Jun Lee,et al.  Cellular stress created by intermediary metabolite imbalances , 2009, Proceedings of the National Academy of Sciences.

[127]  Ying Zhang,et al.  Insights into the Molecular Basis of L-Form Formation and Survival in Escherichia coli , 2009, PloS one.

[128]  Victor Zhurkin,et al.  Noncoding RNAs Binding to the Nucleoid Protein HU in Escherichia coli , 2012, Journal of bacteriology.

[129]  T. Speed,et al.  Summaries of Affymetrix GeneChip probe level data. , 2003, Nucleic acids research.

[130]  Jean-Marie Rouillard,et al.  Evolution combined with genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli , 2011, Microbial cell factories.

[131]  P. Uetz,et al.  The binary protein-protein interaction landscape of Escherichia coli , 2014, Nature Biotechnology.

[132]  Anastasios N. Venetsanopoulos,et al.  Artificial neural networks - learning algorithms, performance evaluation, and applications , 1992, The Kluwer international series in engineering and computer science.

[133]  Hanlee P. Ji,et al.  The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. , 2006, Nature biotechnology.

[134]  Steven T Pullan,et al.  Transcriptional Responses of Escherichia coli to S-Nitrosoglutathione under Defined Chemostat Conditions Reveal Major Changes in Methionine Biosynthesis* , 2005, Journal of Biological Chemistry.

[135]  F. Neidhardt,et al.  Ribosomes as sensors of heat and cold shock in Escherichia coli. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[136]  Yanli Wang,et al.  PubChem: a public information system for analyzing bioactivities of small molecules , 2009, Nucleic Acids Res..

[137]  Hugues Bersini,et al.  Batch effect removal methods for microarray gene expression data integration: a survey , 2013, Briefings Bioinform..

[138]  M. Radmacher,et al.  pH Regulates Genes for Flagellar Motility, Catabolism, and Oxidative Stress in Escherichia coli K-12 , 2005, Journal of bacteriology.

[139]  María Martín,et al.  Activities at the Universal Protein Resource (UniProt) , 2013, Nucleic Acids Res..

[140]  Sarah E. Ades,et al.  The Rcs Phosphorelay Is a Cell Envelope Stress Response Activated by Peptidoglycan Stress and Contributes to Intrinsic Antibiotic Resistance , 2008, Journal of bacteriology.

[141]  Sang Jun Lee,et al.  Inactivation of Metabolic Genes Causes Short- and Long-Range dys-Regulation in Escherichia coli Metabolic Network , 2013, PloS one.

[142]  Carol A Gross,et al.  A chaperone network controls the heat shock response in E. coli. , 2004, Genes & development.

[143]  Jorge Membrillo-Hernández,et al.  Effect of anaerobic and stationary phase growth conditions on the heat shock and oxidative stress responses in Escherichia coli K-12 , 2006, Archives of Microbiology.

[144]  Pei Yee Ho,et al.  Multiple High-Throughput Analyses Monitor the Response of E. coli to Perturbations , 2007, Science.

[145]  Andrew Emili,et al.  Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. , 2012, Cell host & microbe.

[146]  S. Rosenberg,et al.  General stress response regulator RpoS in adaptive mutation and amplification in Escherichia coli. , 2004, Genetics.

[147]  Johan A. K. Suykens,et al.  Artificial neural networks for modelling and control of non-linear systems , 1995 .

[148]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[149]  Edoardo M. Airoldi,et al.  Predicting Cellular Growth from Gene Expression Signatures , 2009, PLoS Comput. Biol..

[150]  Fátima Al-Shahrour,et al.  Exploring the antimicrobial action of a carbon monoxide-releasing compound through whole-genome transcription profiling of Escherichia coli. , 2009, Microbiology.

[151]  Jörg Bernhardt,et al.  Norvaline is accumulated after a down-shift of oxygen in Escherichia coli W3110 , 2008, Microbial cell factories.

[152]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[153]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[154]  T. Hwa,et al.  Growth Rate-Dependent Global Effects on Gene Expression in Bacteria , 2009, Cell.

[155]  Christopher P. Long,et al.  Integrated 13C-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli. , 2015, Metabolic engineering.

[156]  Edward J. O'Brien,et al.  Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli , 2014, Nature Communications.

[157]  J. Rabinowitz,et al.  Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase , 2012, Nature chemical biology.

[158]  Ziv Bar-Joseph,et al.  A Semi-Supervised Method for Predicting Transcription Factor–Gene Interactions in Escherichia coli , 2008, PLoS Comput. Biol..

[159]  Araceli M. Huerta,et al.  Regulatory network of Escherichia coli: consistency between literature knowledge and microarray profiles. , 2003, Genome research.

[160]  Amanda G. Oglesby-Sherrouse,et al.  Sibling rivalry: related bacterial small RNAs and their redundant and non-redundant roles , 2014, Front. Cell. Infect. Microbiol..

[161]  T. Wood,et al.  Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803 , 2007, BMC biotechnology.

[162]  Lennart Martens,et al.  PRIDE: a public repository of protein and peptide identifications for the proteomics community , 2005, Nucleic Acids Res..

[163]  A. Emili,et al.  Interaction network containing conserved and essential protein complexes in Escherichia coli , 2005, Nature.

[164]  Gavin Brown,et al.  Ensemble Learning , 2010, Encyclopedia of Machine Learning and Data Mining.

[165]  T. Rognes,et al.  Custom Design and Analysis of High-Density Oligonucleotide Bacterial Tiling Microarrays , 2009, PLoS ONE.

[166]  Friedrich Srienc,et al.  Thymineless death is associated with loss of essential genetic information from the replication origin , 2010, Molecular microbiology.

[167]  Griffin M. Weber,et al.  BioNumbers—the database of key numbers in molecular and cell biology , 2009, Nucleic Acids Res..

[168]  H. Rodríguez,et al.  Phosphate solubilizing bacteria and their role in plant growth promotion. , 1999, Biotechnology advances.

[169]  Elizabeth Yohannes,et al.  Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12 , 2006, BMC Microbiology.

[170]  F. Neidhardt,et al.  Culture Medium for Enterobacteria , 1974, Journal of bacteriology.

[171]  C. Rock,et al.  Transcriptional Regulation of Membrane Lipid Homeostasis in Escherichia coli* , 2009, The Journal of Biological Chemistry.

[172]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[173]  G. Bertani,et al.  STUDIES ON LYSOGENESIS I , 1951, Journal of bacteriology.

[174]  Maqc Consortium The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements , 2006, Nature Biotechnology.

[175]  Joel T. Smith,et al.  The global, ppGpp‐mediated stringent response to amino acid starvation in Escherichia coli , 2008, Molecular microbiology.

[176]  W. Jacobs,et al.  The Alternative Sigma Factor SigH Regulates Major Components of Oxidative and Heat Stress Responses in Mycobacterium tuberculosis , 2001, Journal of bacteriology.

[177]  Ryan T Gill,et al.  Amino acid content of recombinant proteins influences the metabolic burden response. , 2005, Biotechnology and bioengineering.

[178]  Hyungwon Choi,et al.  When One and One Gives More than Two: Challenges and Opportunities of Integrative Omics , 2011, Front. Gene..

[179]  Brian F. Pfleger,et al.  Membrane Stresses Induced by Overproduction of Free Fatty Acids in Escherichia coli , 2011, Applied and Environmental Microbiology.

[180]  Francesco Falciani,et al.  A systems biology approach sheds new light on Escherichia coli acid resistance , 2011, Nucleic acids research.

[181]  E. Marcotte,et al.  Insights into the regulation of protein abundance from proteomic and transcriptomic analyses , 2012, Nature Reviews Genetics.

[182]  Peter D. Karp,et al.  The EcoCyc Database , 2002, Nucleic Acids Res..

[183]  Lin He,et al.  MicroRNAs: small RNAs with a big role in gene regulation , 2004, Nature Reviews Genetics.

[184]  Tomaso A. Poggio,et al.  Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.

[185]  Amy K. Schmid,et al.  A Predictive Model for Transcriptional Control of Physiology in a Free Living Cell , 2007, Cell.

[186]  Jacques Monod,et al.  The genetic control and cytoplasmic expression of “Inducibility” in the synthesis of β-galactosidase by E. coli , 1959 .

[187]  Chong Su,et al.  Bacteriome.org—an integrated protein interaction database for E. coli , 2007, Nucleic Acids Res..

[188]  M. Allen,et al.  The response of Escherichia coli to exposure to the biocide polyhexamethylene biguanide. , 2006, Microbiology.

[189]  B. Palsson,et al.  Genome-scale reconstruction of the sigma factor network in Escherichia coli: topology and functional states , 2014, BMC Biology.

[190]  Stanley Brul,et al.  Compensation of the Metabolic Costs of Antibiotic Resistance by Physiological Adaptation in Escherichia coli , 2013, Antimicrobial Agents and Chemotherapy.

[191]  Benjamin M. Bolstad,et al.  affy - analysis of Affymetrix GeneChip data at the probe level , 2004, Bioinform..

[192]  Christoph Wittmann,et al.  Response of fluxome and metabolome to temperature-induced recombinant protein synthesis in Escherichia coli. , 2007, Journal of biotechnology.

[193]  Manjunath Hegde,et al.  Indole cell signaling occurs primarily at low temperatures in Escherichia coli , 2008, The ISME Journal.

[194]  L. Blank,et al.  Metabolic and Transcriptional Response to Cofactor Perturbations in Escherichia coli , 2010, The Journal of Biological Chemistry.

[195]  Matthias Reuss,et al.  Metabolic flux analysis in Escherichia coli by integrating isotopic dynamic and isotopic stationary 13C labeling data , 2008, Biotechnology and bioengineering.