An O(n log n) heuristic for steiner minimal tree problems on the euclidean metric
暂无分享,去创建一个
[1] F. Hwang,et al. An o(nlogn) algorithm for suboptimal rectilinear steiner trees , 1979 .
[2] R. Courant,et al. What Is Mathematics , 1943 .
[3] David S. Johnson,et al. The Complexity of Computing Steiner Minimal Trees , 1977 .
[4] Der-Tsai Lee. On Finding K Nearest Neighbors in the Plane , 1976 .
[5] Z. A. Melzak. On the Problem of Steiner , 1961, Canadian Mathematical Bulletin.
[6] James Macgregor Smith. Algorithms for Generalized Steiner Network (Gsn) Problems , 1978 .
[7] Harold W. Kuhn,et al. A note on Fermat's problem , 1973, Math. Program..
[8] Z. A. Melzak. Mathematical ideas, modeling and applications , 1976 .
[9] W. Miehle. Link-Length Minimization in Networks , 1958 .
[10] Fan Chung,et al. A Lower Bound for the Steiner Tree Problem , 1978 .
[11] Robert E. Tarjan,et al. Finding Minimum Spanning Trees , 1976, SIAM J. Comput..
[12] Richard M. Karp,et al. Probabilistic Analysis of Partitioning Algorithms for the Traveling-Salesman Problem in the Plane , 1977, Math. Oper. Res..
[13] Michael Ian Shamos,et al. Geometric complexity , 1975, STOC.
[14] Henry O. Pollak,et al. Some Remarks on the Steiner Problem , 1978, J. Comb. Theory A.
[15] Alfred V. Aho,et al. The Design and Analysis of Computer Algorithms , 1974 .
[16] J. MacGregor Smith,et al. STEINER TREES, STEINER CIRCUITS AND THE INTERFERENCE PROBLEM IN BUILDING DESIGN , 1979 .
[17] Shi-Kuo Chang,et al. The Generation of Minimal Trees with a Steiner Topology , 1972, JACM.