Anisotropic local laws for random matrices

We develop a new method for deriving local laws for a large class of random matrices. It is applicable to many matrix models built from sums and products of deterministic or independent random matrices. In particular, it may be used to obtain local laws for matrix ensembles that are anisotropic in the sense that their resolvents are well approximated by deterministic matrices that are not multiples of the identity. For definiteness, we present the method for sample covariance matrices of the form , where T is deterministic and X is random with independent entries. We prove that with high probability the resolvent of Q is close to a deterministic matrix, with an optimal error bound and down to optimal spectral scales. As an application, we prove the edge universality of Q by establishing the Tracy–Widom–Airy statistics of the eigenvalues of Q near the soft edges. This result applies in the single-cut and multi-cut cases. Further applications include the distribution of the eigenvectors and an analysis of the outliers and BBP-type phase transitions in finite-rank deformations; they will appear elsewhere. We also apply our method to Wigner matrices whose entries have arbitrary expectation, i.e. we consider $$W+A$$W+A where W is a Wigner matrix and A a Hermitian deterministic matrix. We prove the anisotropic local law for $$W+A$$W+A and use it to establish edge universality.

[1]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[2]  Tosio Kato Perturbation theory for linear operators , 1966 .

[3]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[4]  L. Pastur On the spectrum of random matrices , 1972 .

[5]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.

[6]  J. W. Silverstein,et al.  Analysis of the limiting spectral distribution of large dimensional random matrices , 1995 .

[7]  J. W. Silverstein,et al.  On the empirical distribution of eigenvalues of a class of large dimensional random matrices , 1995 .

[8]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[9]  J. W. Silverstein,et al.  No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices , 1998 .

[10]  J. W. Silverstein,et al.  EXACT SEPARATION OF EIGENVALUES OF LARGE DIMENSIONAL SAMPLE COVARIANCE MATRICES , 1999 .

[11]  K. Johansson From Gumbel to Tracy-Widom , 2005, math/0510181.

[12]  S. Chatterjee A generalization of the Lindeberg principle , 2005, math/0508519.

[13]  Noureddine El Karoui Tracy–Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices , 2005, math/0503109.

[14]  Tetiana Shcherbyna On Universality of Bulk Local Regime of the Deformed Gaussian Unitary Ensemble , 2008, 0804.2116.

[15]  A. Onatski The Tracy–Widom limit for the largest eigenvalues of singular complex Wishart matrices , 2008, 0803.4155.

[16]  T. Tao,et al.  Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.

[17]  Horng-Tzer Yau,et al.  Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.

[18]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[19]  Jun Yin,et al.  The local relaxation flow approach to universality of the local statistics for random matrices , 2009, 0911.3687.

[20]  H. Yau,et al.  Universality of random matrices and local relaxation flow , 2009, 0907.5605.

[21]  L. Pastur,et al.  CENTRAL LIMIT THEOREM FOR LINEAR EIGENVALUE STATISTICS OF RANDOM MATRICES WITH INDEPENDENT ENTRIES , 2008, 0809.4698.

[22]  H. Yau,et al.  Bulk universality for generalized Wigner matrices , 2010, 1001.3453.

[23]  H. Yau,et al.  Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.

[24]  Philippe Loubaton,et al.  ON BILINEAR FORMS BASED ON THE RESOLVENT OF LARGE RANDOM MATRICES , 2010, 1004.3848.

[25]  A hereditarily indecomposable $ {\mathcal{L}_{\infty}} $-space that solves the scalar-plus-compact problem , 2011 .

[26]  Jun Yin,et al.  The Isotropic Semicircle Law and Deformation of Wigner Matrices , 2011, 1110.6449.

[27]  V. Kargin Subordination for the sum of two random matrices , 2011, 1109.5818.

[28]  N. Pillai,et al.  Universality of covariance matrices , 2011, 1110.2501.

[29]  H. Yau,et al.  Spectral Statistics of Erdős-Rényi Graphs II: Eigenvalue Spacing and the Extreme Eigenvalues , 2011, 1103.3869.

[30]  H. Yau,et al.  The local semicircle law for a general class of random matrices , 2012, 1212.0164.

[31]  Wang Zhou,et al.  Universality for the largest eigenvalue of a class of sample covariance matrices , 2013 .

[32]  Wang Zhou,et al.  Universality for the largest eigenvalue of sample covariance matrices with general population , 2013, 1304.5690.

[33]  H. Yau,et al.  Spectral statistics of Erdős–Rényi graphs I: Local semicircle law , 2011, 1103.1919.

[34]  Antti Knowles,et al.  Averaging Fluctuations in Resolvents of Random Band Matrices , 2012, 1205.5664.

[35]  H. Yau,et al.  Isotropic local laws for sample covariance and generalized Wigner matrices , 2013, 1308.5729.

[36]  J. Lee,et al.  Tracy-Widom Distribution for the Largest Eigenvalue of Real Sample Covariance Matrices with General Population , 2014, 1409.4979.

[37]  H. Yau,et al.  On the principal components of sample covariance matrices , 2014, 1404.0788.

[38]  Walid Hachem,et al.  Large complex correlated Wishart matrices: Fluctuations and asymptotic independence at the edges , 2014, 1409.7548.

[39]  S. Péché,et al.  Fluctuations at the edges of the spectrum of the full rank deformed GUE , 2014, 1402.2262.

[40]  F. Benaych-Georges Local Single Ring Theorem , 2015, 1501.07840.

[41]  J. Lee,et al.  Edge universality for deformed Wigner matrices , 2014, 1407.8015.

[42]  H. Yau,et al.  Bulk universality for deformed Wigner matrices , 2014, 1405.6634.