Development of mixed‐phase clouds from multiple aerosol size distributions and the effect of the clouds on aerosol removal

[1] This paper provides numerics for cloud and precipitation development from multiple aerosol size distributions and examines the effect of clouds and precipitation on aerosol removal. Numerical techniques are given for (1) simultaneous liquid and ice growth onto multiple aerosol size distributions, (2) diffusiophoretic, thermophoretic, gravitational, etc., coagulation among liquid, ice, and graupel, and their aerosol components, (3) contact freezing (CF) of drops by size-resolved interstitial aerosols, (4) heterogeneous plus homogeneous freezing, (5) liquid drop breakup, (6) coagulation of cloud hydrometeors and incorporated aerosols with interstitial aerosols, (7) coagulation of precipitation hydrometeors with interstitial and below-cloud aerosols (washout), (8) removal of precipitation and incorporated aerosols (rainout), (9) below-cloud evaporation/sublimation to smaller hydrometeors and aerosol cores, (10) gas washout, and (11) aqueous chemistry. Major conclusions are (1) hydrometeor-hydrometeor coagulation appears to play a substantial role in controlling aerosol-particle number globally, (2) washout (aerosol-hydrometeor coagulation) may be a more important in-plus below-cloud removal mechanism of aerosol number than rainout (the opposite is true for aerosol mass), (3) close-in diameter dual peaks in observed cloud distributions may be in part due to different activation characteristics of different aerosol distributions, (4) evaporative cooling at liquid drop surfaces in subsaturated air may be a mechanism of drop freezing (termed “evaporative freezing” here), and (5) heterogeneous-homogeneous freezing may freeze more upper-tropospheric drops than CF, but neither appears to affect warm-cloud hydrometeor distributions or aerosol scavenging substantially.

[1]  J. Seinfeld,et al.  Modification of aerosol mass and size distribution due to aqueous‐phase SO2 oxidation in clouds: Comparisons of several models , 2003 .

[2]  H. Reiss,et al.  Surface crystallization of supercooled water in clouds , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M. Jacobson Analysis of aerosol interactions with numerical techniques for solving coagulation, nucleation, condensation, dissolution, and reversible chemistry among multiple size distributions , 2002 .

[4]  M. Jacobson Control of fossil‐fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming , 2002 .

[5]  U. Lohmann Possible Aerosol Effects on Ice Clouds via Contact Nucleation , 2002 .

[6]  George Tselioudis,et al.  GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden , 2002 .

[7]  Andrew S. Jones,et al.  Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle , 2001 .

[8]  Leon D. Rotstayn,et al.  Indirect Aerosol Forcing, Quasi Forcing, and Climate Response , 2001 .

[9]  W. Skamarock,et al.  Numerical simulations of the July 10, 1996, Stratospheric‐Tropospheric Experiment: Radiation, Aerosols, and Ozone (STERAO)‐Deep Convection experiment storm: Redistribution of soluble tracers , 2001 .

[10]  James G. Hudson,et al.  Evaluation of aerosol direct radiative forcing in MIRAGE , 2001 .

[11]  M. Jacobson GATOR-GCMM: A global through urban scale air pollution and weather forecast model , 2001 .

[12]  D. Jacob,et al.  Transport and scavenging of soluble gases in a deep , 2000 .

[13]  Mikhail Ovtchinnikov,et al.  An Investigation of Ice Production Mechanisms in Small Cumuliform Clouds Using a 3D Model with Explicit Microphysics. Part I: Model Description , 2000 .

[14]  Joyce E. Penner,et al.  Indirect effect of sulfate and carbonaceous aerosols: A mechanistic treatment , 2000 .

[15]  A. Bott A Flux Method for the Numerical Solution of the Stochastic Collection Equation: Extension to Two-Dimensional Particle Distributions , 2000 .

[16]  Y. Sud,et al.  Microphysics of Clouds with the Relaxed Arakawa–Schubert Scheme (McRAS). Part I: Design and Evaluation with GATE Phase III Data , 1999 .

[17]  M. Facchini,et al.  Cloud albedo enhancement by surface-active organic solutes in growing droplets , 1999, Nature.

[18]  S. Kreidenweis,et al.  Stratocumulus processing of gases and cloud condensation nuclei : 2. Chemistry sensitivity analysis , 1999 .

[19]  Jen-Ping Chen,et al.  Simulation of Cloud Microphysical and Chemical Processes Using a Multicomponent Framework. Part II: Microphysical Evolution of a Wintertime Orographic Cloud , 1999 .

[20]  M. Jacobson,et al.  A study of sulfur dioxide oxidation pathways over a range of liquid water contents, pH values, and temperatures , 1999 .

[21]  Mark Z. Jacobson,et al.  Fundamentals of atmospheric modeling , 1998 .

[22]  S. Kreidenweis,et al.  Stratocumulus processing of gases and cloud condensation nuclei: 1. Trajectory ensemble model , 1998 .

[23]  Xiaohong Liu,et al.  Modeling study of cloud droplet nucleation and in‐cloud sulfate production during the Sanitation of the Atmosphere (SANA) 2 campaign , 1998 .

[24]  D. Randall,et al.  A cumulus parameterization with multiple cloud base levels , 1998 .

[25]  M. Rood,et al.  Influence of Soluble Surfactant Properties on the Activation of Aerosol Particles Containing Inorganic Solute , 1998 .

[26]  D. Lilly,et al.  Cloud factor and seasonality of the indirect effect of anthropogenic sulfate aerosols , 1997 .

[27]  S. Kreidenweis,et al.  The effects of clouds on aerosol and chemical species production and distribution: 2. Chemistry model description and sensitivity analysis , 1997 .

[28]  S. Kreidenweis,et al.  The effects of clouds on aerosol and chemical species production and distribution , 1997 .

[29]  S. Pandis,et al.  Effect of composition variations in cloud droplet populations on aqueous‐phase chemistry , 1997 .

[30]  I. Tang Thermodynamic and optical properties of mixed‐salt aerosols of atmospheric importance , 1997 .

[31]  M. Jacobson Numerical Techniques to Solve Condensational and Dissolutional Growth Equations When Growth is Coupled to Reversible Reactions , 1997 .

[32]  M. Jacobson Development and application of a new air pollution modeling system—II. Aerosol module structure and design , 1997 .

[33]  D. Randall,et al.  A Semiempirical Cloudiness Parameterization for Use in Climate Models , 1996 .

[34]  B. Stevens,et al.  Numerical simulations of stratocumulus processing of cloud condensation nuclei through , 1996 .

[35]  Shouping Wang Defining Marine Boundary Layer Clouds with a Prognostic Scheme , 1996 .

[36]  D. Randall,et al.  Liquid and Ice Cloud Microphysics in the CSU General Circulation Model. Part 1: Model Description and Simulated Microphysical Processes , 1996 .

[37]  Z. Levin,et al.  Rain Production in Convective Clouds As Simulated in an Axisymmetric Model with Detailed Microphysics. Part I : Description of the Model , 1996 .

[38]  G. Brasseur,et al.  A three-dimensional study of the tropospheric sulfur cycle , 1995 .

[39]  J. Penner,et al.  Effects of anthropogenic sulfate on cloud drop nucleation and optical properties , 1995 .

[40]  W. Cotton,et al.  New RAMS cloud microphysics parameterization part I: the single-moment scheme , 1995 .

[41]  Olivier Boucher,et al.  The sulfate‐CCN‐cloud albedo effect , 1995 .

[42]  P. Hobbs,et al.  A Model for Particle Microphysics,Turbulent Mixing, and Radiative Transfer in the Stratocumulus-Topped Marine Boundary Layer and Comparisons with Measurements , 1995 .

[43]  M. Hounslow,et al.  Adjustable discretized population balance for growth and aggregation , 1995 .

[44]  Jen‐Ping Chen,et al.  Simulation of cloud microphysical and chemical processes using a multicomponent framework. Part I: Description of the microphysical model , 1994 .

[45]  R. Turco,et al.  Air pollutant transport in a coastal environment. Part 1: Two-dimensional simulations of sea-breeze and mountain effects , 1994 .

[46]  H. Park,et al.  Comparison of microphysics parameterizations in a three-dimensional dynamic cloud model , 1994 .

[47]  R. Turco,et al.  Modeling coagulation among particles of different composition and size , 1994 .

[48]  Z. Levin,et al.  Numerical simulation of hygroscopic seeding in a convective cloud , 1994 .

[49]  B. Ferrier,et al.  A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part I: Description , 1994 .

[50]  M. Tiedtke,et al.  Representation of Clouds in Large-Scale Models , 1993 .

[51]  Chien Wang,et al.  A three‐dimensional numerical model of cloud dynamics, microphysics, and chemistry: 1. Concepts and formulation , 1993 .

[52]  I. Lee Comparison of cloud microphysics parameterizations for simulation of mesoscale clouds and precipitation , 1992 .

[53]  W. Cotton,et al.  New primary ice-nucleation parameterizations in an explicit cloud model , 1992 .

[54]  P. Hobbs,et al.  Numerical modeling of cloud and precipitation chemistry associated with two rainbands and some comparisons with observations , 1992 .

[55]  Henning Rodhe,et al.  A global three-dimensional model of the tropospheric sulfur cycle , 1991 .

[56]  Yefim L. Kogan,et al.  The simulation of a convective cloud in a 3-D model with explicit microphysics , 1991 .

[57]  Zev Levin,et al.  The Evolution of Raindrop Spectra. Part II: Collisional Collection/Breakup and Evaporation in a Rainshaft , 1989 .

[58]  S. Rutledge,et al.  The chemistry of a mesoscale rainband , 1989 .

[59]  Ying-Hwa Kuo,et al.  Semiprognostic Tests of Cumulus Parameterization Schemes in the Middle Latitudes , 1988 .

[60]  M. Hounslow,et al.  A discretized population balance for nucleation, growth, and aggregation , 1988 .

[61]  G. Feingold,et al.  An Efficient Numerical Solution to the Stochastic Collection Equation , 1987 .

[62]  A. Betts,et al.  A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air‐mass data sets , 1986 .

[63]  C. Walcek,et al.  A Theoretical Method for Computing Vertical Distributions of Acidity and Sulfate Production within Cumulus Clouds , 1986 .

[64]  W. Hall,et al.  A Theoretical Study of the Wet Removal of Atmospheric Pollutants. Part I: The Redistribution of Aerosol Particles Captured through Nucleation and Impaction Scavenging by Growing Cloud Drops , 1985 .

[65]  K. Beard,et al.  Collection and coalescence efficiencies for accretion , 1984 .

[66]  S. Rutledge,et al.  A numerical model for sulfur chemistry in warm‐frontal rainbands , 1984 .

[67]  R. Turco,et al.  Noctilucent clouds: Simulation studies of their genesis, properties and global influences , 1982 .

[68]  G. Mellor,et al.  Development of a turbulence closure model for geophysical fluid problems , 1982 .

[69]  R. Rasmussen,et al.  A Wind Tunnel and Theoretical Study of the Melting Behavior of Atmospheric Ice Particles. II: A Theoretical Study for Frozen Drops of Radius < 500 μm , 1982 .

[70]  W. Hall,et al.  A Detailed Microphysical Model Within a Two-Dimensional Dynamic Framework: Model Description and Preliminary Results , 1980 .

[71]  P. Wang,et al.  A theoretical study of the effect of electric charges on the efficiency with which aerosol particles are collected by ice crystal plates , 1980 .

[72]  P. Wang,et al.  On the Effect of Electric Charges on the Scavenging of Aerosol Particles by Clouds and Small Raindrops , 1978 .

[73]  Hilding Sundqvist,et al.  A parameterization scheme for non-convective condensation including prediction of cloud water content , 1978 .

[74]  Akio Arakawa,et al.  Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .

[75]  R. List,et al.  Evolution of Raindrop Spectra with Collision-Induced Breakup , 1976 .

[76]  K. Beard Terminal Velocity and Shape of Cloud and Precipitation Drops Aloft , 1976 .

[77]  H. Kuo Further Studies of the Parameterization of the Influence of Cumulus Convection on Large-Scale Flow , 1974 .

[78]  A. Arakawa,et al.  Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I , 1974 .

[79]  K. Beard,et al.  Numerical Collision Efficiencies for Small Raindrops Colliding with Micron Size Particles , 1974 .

[80]  H. Pruppacher,et al.  A wind tunnel investigation of freezing of small water drops falling at terminal velocity in air , 1973 .

[81]  R. Bleck,et al.  Hail Growth by Stochastic Collection in a Cumulus Model , 1972 .

[82]  R. Rasmussen,et al.  A Wind Tunnel Investigation of the Rate of Evaporation of Small Water Drops Falling at Terminal Velocity in Air , 1971 .

[83]  Syukuro Manabe,et al.  SIMULATION OF CLIMATE BY A GLOBAL GENERAL CIRCULATION MODEL , 1971 .

[84]  G. Vali Quantitative Evaluation of Experimental Results an the Heterogeneous Freezing Nucleation of Supercooled Liquids , 1971 .

[85]  H. D. Orville,et al.  Numerical Simulation of the Life History of a Hailstorm , 1970 .

[86]  C. N. Davies,et al.  The Mechanics of Aerosols , 1964 .

[87]  W. Mordy Computations of the Growth by Condensation of a Population of Cloud Droplets , 1959 .

[88]  E. Bigg The formation of atmospheric ice crystals by the freezing of droplets , 1953 .