On the p-adic Navier–Stokes equation

ABSTRACT We prove the local solvability of the p-adic analog of the Navier–Stokes equation. This equation describes, within the p-adic model of porous medium, the flow of a fluid in capillaries.

[1]  Andrei Khrennikov,et al.  P-Adic Analog of Navier-Stokes Equations: Dynamics of Fluid's Flow in Percolation Networks (from Discrete Dynamics with Hierarchic Interactions to Continuous Universal Scaling Model) , 2017, Entropy.

[2]  Anatoly N. Kochubei,et al.  Pseudo-differential equations and stochastics over non-archimedean fields , 2001 .

[3]  Andrei Khrennikov,et al.  Application of p-Adic Wavelets to Model Reaction–Diffusion Dynamics in Random Porous Media , 2016 .

[4]  Wolf von Wahl,et al.  The equations of Navier-Stokes and abstract parabolic equations , 1985 .

[5]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[6]  V.S.Vladimirov Tables of Integrals of Complex-valued Functions of p-Adic arguments , 1999, math-ph/9911027.

[7]  A. Kochubei Linear and Nonlinear Heat Equations on a p-Adic Ball , 2017, Ukrainian Mathematical Journal.

[8]  Raffaele Tripiccione,et al.  (1+1)-dimensional turbulence , 1996, chao-dyn/9610012.

[9]  S. Krein,et al.  Linear Differential Equations in Banach Space , 1972 .

[10]  Andrei Khrennikov,et al.  Theory of P-Adic Distributions: Linear and Nonlinear Models , 2010 .

[11]  André Weil,et al.  L'integration dans les groupes topologiques et ses applications , 1951 .

[12]  W. A. Zúñiga-Galindo Pseudodifferential Equations Over Non-Archimedean Spaces , 2017 .

[13]  Andrei Khrennikov,et al.  A stochastic p-adic model of the capillary flow in porous random medium , 2018, Physica A: Statistical Mechanics and its Applications.

[14]  Meng Sun,et al.  A New Feature Extraction Method Based on EEMD and Multi-Scale Fuzzy Entropy for Motor Bearing , 2016, Entropy.

[15]  W. A. Zúñiga-Galindo,et al.  Ultrametric Pseudodifferential Equations and Applications , 2018 .

[16]  Anatoly N. Kochubei,et al.  p-Adic Analogue of the Porous Medium Equation , 2016, 1611.08863.

[17]  Andrei Khrennikov,et al.  Modeling Fluid's Dynamics with Master Equations in Ultrametric Spaces Representing the Treelike Structure of Capillary Networks , 2016, Entropy.