The rarity of terrestrial gamma‐ray flashes: 2. RHESSI stacking analysis

We searched for gamma‐ray emission from lightning using the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) satellite by identifying times when RHESSI was near over 2 million lightning discharges localized by the Worldwide Lightning Location Network (WWLLN). We then stacked together the gamma‐ray arrival times relative to the sferic times, correcting for light propagation time to the satellite. The resulting stacked gamma‐ray time profile is sensitive to an average level of gamma‐ray emission per lightning discharge far lower than what can be recognized above background for a single terrestrial gamma‐ray flash (TGF). The summed signal from presumed small, previously unknown TGFs simultaneous with WWLLN discharges is remarkably weak: for the region from 0 to 300 km beneath RHESSI's footprint, (6.2 ± 3.8) × 10−3 detector counts/discharge are measured, as opposed to a typical range of 12–50 detector counts for TGFs identified solely from the gamma‐ray signal. Under the assumption of a broken power law differential distribution of TGF intensities, we find that the index must harden dramatically or cut off just below the sensitivity limit of current satellites and that for most scenarios less than 1% of lightning can produce a TGF that belongs anywhere in the same distribution as those that are observable. For the minority of scenarios where more than a few percent of flashes produce a TGF, most of these “TGFs” are less than 10−4 of the luminosity of the faintest RHESSI TGFs and therefore closer to the luminosity of lightning stepped leaders. The rarity of TGFs holds not only for TGFs simultaneous with the sferic observed by WWLLN but also for any time within 10 ms of the sferic, allowing (for example) for the possibility that different events within the upward propagation of a negative leader in positive intracloud lightning triggered the TGF and WWLLN's detection.

[1]  N. Østgaard,et al.  A new population of terrestrial gamma‐ray flashes in the RHESSI data , 2015, 1605.05465.

[2]  S. Cummer,et al.  A lightning‐based search for nearby observationally dim terrestrial gamma ray flashes , 2015 .

[3]  J. Montanyà,et al.  Observation of intrinsically bright terrestrial gamma ray flashes from the Mediterranean basin , 2015, Journal of geophysical research. Atmospheres : JGR.

[4]  V. Pasko,et al.  Variability in fluence and spectrum of high‐energy photon bursts produced by lightning leaders , 2015 .

[5]  M. Trifoglio,et al.  Enhanced detection of terrestrial gamma‐ray flashes by AGILE , 2015, Geophysical research letters.

[6]  J. Dwyer,et al.  Lightning leader altitude progression in terrestrial gamma‐ray flashes , 2015 .

[7]  S. Cummer,et al.  Insights into high peak current in‐cloud lightning events during thunderstorms , 2015 .

[8]  Gerald J. Fishman,et al.  The source altitude, electric current, and intrinsic brightness of terrestrial gamma ray flashes , 2014 .

[9]  J. Dwyer,et al.  Constraining faint terrestrial gamma-ray flashes with stacking analyses , 2014 .

[10]  N. Østgaard,et al.  An altitude and distance correction to the source fluence distribution of TGFs , 2014, Journal of geophysical research. Space physics.

[11]  M. Trifoglio,et al.  Properties of terrestrial gamma ray flashes detected by AGILE MCAL below 30 MeV , 2014 .

[12]  P. N. Bhat,et al.  Fluence distribution of terrestrial gamma ray flashes observed by the Fermi Gamma‐ray Burst Monitor , 2013 .

[13]  J. Dwyer,et al.  Radio emissions from terrestrial gamma‐ray flashes , 2013 .

[14]  P. N. Bhat,et al.  Terrestrial gamma‐ray flashes in the Fermi era: Improved observations and analysis methods , 2013 .

[15]  N. Østgaard,et al.  How simulated fluence of photons from terrestrial gamma ray flashes at aircraft and balloon altitudes depends on initial parameters , 2013 .

[16]  P. N. Bhat,et al.  Radio signals from electron beams in terrestrial gamma ray flashes , 2013 .

[17]  Robert H. Holzworth,et al.  Relative detection efficiency of the World Wide Lightning Location Network , 2012 .

[18]  V. Pasko,et al.  Terrestrial gamma ray flashes with energies up to 100 MeV produced by nonequilibrium acceleration of electrons in lightning , 2012 .

[19]  N. Østgaard,et al.  The true fluence distribution of terrestrial gamma flashes at satellite altitude , 2012 .

[20]  C. Eyles,et al.  A new method reveals more TGFs in the RHESSI data , 2012 .

[21]  V. Pasko,et al.  Compton scattering effects on the duration of terrestrial gamma‐ray flashes , 2012 .

[22]  M. Cohen,et al.  Confining the angular distribution of terrestrial gamma ray flash emission , 2011 .

[23]  N. Østgaard,et al.  Assessing the power law distribution of TGFs , 2011 .

[24]  Gerald J. Fishman,et al.  The lightning‐TGF relationship on microsecond timescales , 2011 .

[25]  M. Trifoglio,et al.  High spatial resolution correlation of AGILE TGFs and global lightning activity above the equatorial belt , 2011 .

[26]  S. Cummer,et al.  The rarity of terrestrial gamma‐ray flashes , 2011 .

[27]  S. Cummer,et al.  Characteristics of broadband lightning emissions associated with terrestrial gamma ray flashes , 2011 .

[28]  P. N. Bhat,et al.  Associations between Fermi Gamma‐ray Burst Monitor terrestrial gamma ray flashes and sferics from the World Wide Lightning Location Network , 2010 .

[29]  Kristen L. Corbosiero,et al.  An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth , 2010 .

[30]  J. Dwyer,et al.  Terrestrial gamma ray flashes correlated to storm phase and tropopause height , 2010 .

[31]  H. Christian,et al.  Lightning mapping observation of a terrestrial gamma‐ray flash , 2010 .

[32]  D. Smith,et al.  A closer examination of terrestrial gamma‐ray flash‐related lightning processes , 2010 .

[33]  J. Dwyer,et al.  Estimation of the fluence of high-energy electron bursts produced by thunderclouds and the resulting radiation doses received in aircraft , 2010 .

[34]  N. Østgaard,et al.  Effects of dead time losses on terrestrial gamma ray flash measurements with the Burst and Transient Source Experiment , 2010 .

[35]  U. Inan,et al.  Geolocation of terrestrial gamma‐ray flash source lightning , 2010 .

[36]  Martin A. Uman,et al.  Properties of the X-ray emission from rocket-triggered lightning as measured by the Thunderstorm Energetic Radiation Array (TERA) , 2009 .

[37]  B. Hazelton,et al.  First RHESSI terrestrial gamma ray flash catalog , 2009 .

[38]  S. Cummer,et al.  Spectral dependence of terrestrial gamma‐ray flashes on source distance , 2009 .

[39]  J. Dwyer,et al.  Time evolution of terrestrial gamma ray flashes , 2008 .

[40]  N. Østgaard,et al.  Production altitude and time delays of the terrestrial gamma flashes: Revisiting the Burst and Transient Source Experiment spectra , 2008 .

[41]  U. Inan,et al.  Constraints on terrestrial gamma ray flash production from satellite observation , 2007 .

[42]  Robert H. Holzworth,et al.  Performance Assessment of the World Wide Lightning Location Network (WWLLN), Using the Los Alamos Sferic Array (LASA) as Ground Truth , 2006 .

[43]  A. Regan,et al.  A link between terrestrial gamma‐ray flashes and intracloud lightning discharges , 2005 .

[44]  J. Dwyer,et al.  A comparison between Monte Carlo simulations of runaway breakdown and terrestrial gamma‐ray flash observations , 2005 .

[45]  U. Inan,et al.  Production of terrestrial gamma‐ray flashes by an electromagnetic pulse from a lightning return stroke , 2005 .

[46]  S. Cummer,et al.  Measurements and implications of the relationship between lightning and terrestrial gamma ray flashes , 2005 .

[47]  Robert H. Holzworth,et al.  WWLL global lightning detection system: Regional validation study in Brazil , 2004 .

[48]  Tomoo Ushio,et al.  A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data , 2001 .

[49]  Umran S. Inan,et al.  Monte Carlo simulation of runaway MeV electron breakdown with application to red sprites and terrestrial gamma ray flashes , 1999 .

[50]  Aleksandr V. Gurevich,et al.  On runaway breakdown and upward propagating discharges , 1996 .

[51]  D. Rind,et al.  A simple lightning parameterization for calculating global lightning distributions , 1992 .

[52]  N. Østgaard,et al.  Connecting the terrestrial gamma‐ray flash source strength and observed fluence distributions , 2012 .

[53]  B. Hazelton Statistical studies and modeling of RHESSI terrestrial gamma -ray flashes , 2009 .

[54]  D. A. Landis,et al.  The RHESSI Spectrometer , 2002 .

[55]  K. Cummins,et al.  Combined Satellite- and Surface-Based Estimation of the Intracloud Cloud-to-Ground Lightning Ratio over the Continental United States , 2001 .