Scalable FEA on non-conforming assembly mesh

Abstract Motivated by the potential scalability challenge of unstructured FE simulation at scale, proposed is a FE approach that is free of the difficulty of mesh generation and is highly scalable in terms of pre- and post-processing. Its effectiveness is demonstrated through a structural analysis of 1.2 billion of DOFs, in which conforming mesh generation is prohibitively expensive and difficult.

[1]  Yoshio Suzuki,et al.  Numerical Simulation System “Three-Dimensional Virtual Plant Vibration Simulator” for Nuclear Plants by Using Assembled Structural Analysis , 2007 .

[2]  Michael A. Puso,et al.  A 3D mortar method for solid mechanics , 2004 .

[3]  Genki Yagawa,et al.  Non‐matching mesh gluing by meshless interpolation—an alternative to Lagrange multipliers , 2007 .

[4]  R. Tian A PU-BASED 4-NODE QUADRATIC TETRAHEDON AND LINEAR DEPENDENCES ELIMINATION IN THREE-DIMENSIONS , 2006 .

[5]  Genki Yagawa,et al.  Allman's triangle, rotational DOF and partition of unity , 2007 .

[6]  Tomoshi Miyamura Incorporation of multipoint constraints into the balancing domain decomposition method and its parallel implementation , 2007 .

[7]  I. Babuska,et al.  The generalized finite element method , 2001 .

[8]  Xiong Zhang,et al.  An explicit material point finite element method for hyper‐velocity impact , 2006 .

[9]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[10]  Marc Alexander Schweitzer,et al.  Partition of Unity Method , 2003 .

[11]  Corey Ernst,et al.  Conformal Assembly Meshing with Tolerant Imprinting , 2008, IMR.

[12]  Alain Combescure,et al.  An approach to the connection between subdomains with non‐matching meshes for transient mechanical analysis , 2002 .

[13]  Rong Tian,et al.  A multiresolution continuum simulation of the ductile fracture process , 2010 .

[14]  James Guilkey,et al.  An evaluation of explicit time integration schemes for use with the generalized interpolation material point method , 2008, J. Comput. Phys..

[15]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[16]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[17]  O. C. Zienkiewicz,et al.  A new cloud-based hp finite element method , 1998 .

[18]  Barbara Wohlmuth,et al.  A new dual mortar method for curved interfaces: 2D elasticity , 2005 .

[19]  Genki Yagawa,et al.  Linear dependence problems of partition of unity-based generalized FEMs , 2006 .

[20]  S. Im,et al.  MLS‐based variable‐node elements compatible with quadratic interpolation. Part I: formulation and application for non‐matching meshes , 2006 .

[21]  Yanping Lian,et al.  Coupling of finite element method with material point method by local multi-mesh contact method , 2011 .

[22]  Hyun Gyu Kim,et al.  An improved interface element with variable nodes for non-matching finite element meshes , 2005 .

[23]  Zhiye Zhao,et al.  Investigation of linear dependence problem of three-dimensional partition of unity-based finite element methods , 2012 .

[24]  Huafeng Liu,et al.  Meshfree Particle Methods , 2004 .

[25]  Deborah Sulsky,et al.  An unconditionally stable, energy–momentum consistent implementation of the material-point method , 2006 .

[26]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[27]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[28]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[29]  Xia Ma,et al.  Material point method enhanced by modified gradient of shape function , 2011, J. Comput. Phys..

[30]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[31]  Ted Belytschko,et al.  Structured extended finite element methods for solids defined by implicit surfaces , 2002 .

[32]  D. Sulsky,et al.  A particle method for history-dependent materials , 1993 .

[33]  Guowei Ma,et al.  Prediction of rank deficiency in partition of unity-based methods with plane triangular or quadrilateral meshes , 2011 .

[34]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[35]  Yan Liu,et al.  The carbon nanotube composite simulation by material point method , 2012 .

[36]  C. Farhat,et al.  Optimal convergence properties of the FETI domain decomposition method , 1994 .

[37]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[38]  Clark R. Dohrmann,et al.  Methods for connecting dissimilar three-dimensional finite element meshes , 2000 .

[39]  Timothy J. Tautges,et al.  The generation of hexahedral meshes for assembly geometry: survey and progress , 2001 .

[40]  Dan Stefanica,et al.  Parallel FETI algorithms for mortars , 2005 .

[41]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[42]  Yanping Lian,et al.  An adaptive finite element material point method and its application in extreme deformation problems , 2012 .

[43]  David R. White,et al.  An imprint and merge algorithm incorporating geometric tolerances for conformal meshing of misaligned assemblies , 2004 .

[44]  Rong Tian,et al.  Conforming local meshfree method , 2011 .

[45]  Kenji Shimada,et al.  Mesh Matching - Creating Conforming Interfaces between Hexahedral Meshes , 2008, IMR.

[46]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[47]  Guirong Liu Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .

[48]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[49]  Hitoshi Matsubara,et al.  Advanced 4‐node tetrahedrons , 2006 .

[50]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[51]  Genki Yagawa,et al.  Generalized nodes and high‐performance elements , 2005 .

[52]  Z. Więckowski The material point method in large strain engineering problems , 2004 .

[53]  Y. Maday,et al.  Two different approaches for matching nonconforming grids: The Mortar Element method and the Feti Method , 1997 .

[54]  Luis Quiroz,et al.  Non-conforming mesh gluing in the finite elements method , 1995 .

[55]  Anthony T. Patera,et al.  Nonconforming mortar element methods: Application to spectral discretizations , 1988 .

[56]  Deborah Sulsky,et al.  Implicit dynamics in the material-point method , 2004 .