Boundedness in the Higher-Dimensional Parabolic-Parabolic Chemotaxis System with Logistic Source

We consider nonnegative solutions of the Neumann boundary value problem for the chemotaxis system in a smooth bounded convex domain Ω ⊂ ℝ n , n ≥ 1, where τ > 0, χ ∈ ℝ and f is a smooth function generalizing the logistic source It is shown that if μ is sufficiently large then for all sufficiently smooth initial data the problem possesses a unique global-in-time classical solution that is bounded in Ω × (0, ∞). Known results, asserting boundedness under the additional restriction n ≤ 2, are thereby extended to arbitrary space dimensions.

[1]  Dariusz Wrzosek,et al.  Global attractor for a chemotaxis model with prevention of overcrowding , 2004 .

[2]  H. Gajewski,et al.  Global Behaviour of a Reaction‐Diffusion System Modelling Chemotaxis , 1998 .

[3]  Michael Winkler,et al.  Chemotaxis with logistic source : Very weak global solutions and their boundedness properties , 2008 .

[4]  Tohru Tsujikawa,et al.  Exponential attractor for a chemotaxis-growth system of equations , 2002 .

[5]  Michael Winkler,et al.  A Chemotaxis System with Logistic Source , 2007 .

[6]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[7]  Dirk Horstmann,et al.  Boundedness vs. blow-up in a chemotaxis system , 2005 .

[8]  M. Mimura,et al.  Chemotaxis and growth system with singular sensitivity function , 2005 .

[9]  Hendrik J. Kuiper,et al.  A priori bounds and global existence for a strongly coupled quasilinear parabolic system modeling chemotaxis , 2001 .

[10]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[11]  Tohru Tsujikawa,et al.  Aggregating pattern dynamics in a chemotaxis model including growth , 1996 .

[12]  Joanna Renclawowicz,et al.  Parabolic and navier-stokes equations , 2008 .

[13]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[14]  J. M. Ball,et al.  GEOMETRIC THEORY OF SEMILINEAR PARABOLIC EQUATIONS (Lecture Notes in Mathematics, 840) , 1982 .

[15]  Benoit Perthame,et al.  Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces , 2008, Math. Comput. Model..

[16]  Harald Garcke,et al.  On A Fourth-Order Degenerate Parabolic Equation: Global Entropy Estimates, Existence, And Qualitativ , 1998 .

[17]  Danielle Hilhorst,et al.  Convergence to a viscosity solution for an advection-reaction-diffusion equation arising from a chemotaxis-growth model , 1999 .

[18]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[19]  P. Laurençot,et al.  Global existence and convergence to steady states in a chemorepulsion system , 2008 .

[20]  K. Painter,et al.  Volume-filling and quorum-sensing in models for chemosensitive movement , 2002 .

[21]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[22]  Michael Winkler,et al.  Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model , 2010 .