Multiple multidimensional knapsack problem and its applications in cognitive radio networks

In this paper, a new variant of the standard knapsack problem is investigated and applied in cognitive radio networks. More specifically, the centralized spectrum allocation in cognitive radio networks is formulated as a multiple multidimensional knapsack problem. We propose an exact solution and a heuristic algorithm with guaranteed performance. The performance of the proposed algorithms are compared numerically.

[1]  S. Senju,et al.  An Approach to Linear Programming with 0--1 Variables , 1968 .

[2]  Approximation Algorithm , 2008, Encyclopedia of Algorithms.

[3]  Russell Bent,et al.  Regrets Only! Online Stochastic Optimization under Time Constraints , 2004, AAAI.

[4]  Kap Hwan Kim,et al.  Container Terminals and Cargo Systems , 2007 .

[5]  Dritan Nace,et al.  A robust approach to the chance-constrained knapsack problem , 2008, Oper. Res. Lett..

[6]  Andrea J. Goldsmith,et al.  Estimation Diversity and Energy Efficiency in Distributed Sensing , 2007, IEEE Transactions on Signal Processing.

[7]  Brian M. Sadler,et al.  Dynamic Spectrum Access: Signal Processing, Networking, and Regulatory Policy , 2006, ArXiv.

[8]  Shuguang Cui,et al.  Optimal Linear Cooperation for Spectrum Sensing in Cognitive Radio Networks , 2008, IEEE Journal of Selected Topics in Signal Processing.

[9]  Ian F. Akyildiz,et al.  NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey , 2006, Comput. Networks.

[10]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[11]  Ashish Goel,et al.  Stochastic load balancing and related problems , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[12]  Jan Vondrák,et al.  Approximating the stochastic knapsack problem: the benefit of adaptivity , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[13]  Jella Pfeiffer Combinatorial Auctions and Knapsack Problems - An Analysis of Optimization Methods , 2007 .

[14]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[15]  Yiwei Thomas Hou,et al.  Toward secure distributed spectrum sensing in cognitive radio networks , 2008, IEEE Communications Magazine.

[16]  Ronald L. Rivest,et al.  A Knapsack Type Public Key Cryptosystem Based On Arithmetic in Finite Fields , 1984, CRYPTO.

[17]  R. Faure,et al.  Introduction to operations research , 1968 .

[18]  Russell Bent,et al.  Online stochastic reservation systems , 2009, Ann. Oper. Res..

[19]  Russell Bent,et al.  Sub-optimality Approximations , 2005, CP.

[20]  Xiaodong Wang,et al.  Distributed Robust Optimization for Communication Networks , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[21]  Fan Yang,et al.  Distributed Cooperative Rate Adaptation for Energy Efficiency in IEEE 802.11-Based Multihop Networks , 2006, IEEE Transactions on Vehicular Technology.

[22]  Nicole Immorlica,et al.  A Knapsack Secretary Problem with Applications , 2007, APPROX-RANDOM.

[23]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[24]  Ronald L. Rivest,et al.  A knapsack-type public key cryptosystem based on arithmetic in finite fields , 1988, IEEE Trans. Inf. Theory.

[25]  Anton J. Kleywegt,et al.  The Dynamic and Stochastic Knapsack Problem with Random Sized Items , 2001, Oper. Res..

[26]  Arnaud Fréville,et al.  The multidimensional 0-1 knapsack problem: An overview , 2004, Eur. J. Oper. Res..

[27]  Kap Hwan Kim,et al.  Container Terminals and Cargo Systems: Design, Operations Management, and Logistics Control Issues , 2007 .

[28]  Russell Bent,et al.  Online stochastic combinatorial optimization , 2006 .