Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source.

Supercontinuum radiation sources are attractive for spectroscopic applications owing to their broad wavelength coverage, which enables spectral signatures of multiple species to be detected simultaneously. Here we report the first use of a supercontinuum radiation source for broadband trace gas detection using a cavity enhanced absorption technique. Spectra were recorded at bandwidths of up to 100 nm, encompassing multiple absorption bands of H(2)O, O(2) and O(2)-O(2). The same instrument was also used to make quantitative measurements of NO(2) and NO(3). For NO(3) a detection limit of 3 parts-per-trillion in 2 s was achieved, which corresponds to an effective 3sigma sensitivity of 2.4 x 10(-9) cm(-1)Hz(-1/2). Our results demonstrate that a conceptually simple and robust instrument is capable of highly sensitive broadband absorption measurements.

[1]  D. Romanini,et al.  Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis , 2008 .

[2]  Jun Ye,et al.  Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. , 2008, Optics express.

[3]  Johannes Orphal,et al.  Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: application to HONO and NO2. , 2008, Environmental science & technology.

[4]  Thomas Udem,et al.  Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra. , 2007, Physical review letters.

[5]  N. Picqué,et al.  Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 mum region with a Cr(2+):ZnSe femtosecond laser. , 2007, Optics express.

[6]  Clemens F Kaminski,et al.  High bandwidth absorption spectroscopy with a dispersed supercontinuum source. , 2007, Optics express.

[7]  J. Orphal,et al.  Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source. , 2007, Applied optics.

[8]  David D. Nelson,et al.  Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment , 2007 .

[9]  Scott A. Diddams,et al.  Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb , 2007, Nature.

[10]  Almantas Galvanauskas,et al.  Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power. , 2007, Optics express.

[11]  Jun Ye,et al.  Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 microm. , 2007, Optics letters.

[12]  P. Unwin,et al.  Evanescent wave cavity ring-down spectroscopy in a thin-layer electrochemical cell. , 2006, Analytical chemistry.

[13]  Johannes Orphal,et al.  High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy. , 2006, Environmental science & technology.

[14]  Roderic L Jones,et al.  A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO(2) using light emitting diodes. , 2006, The Analyst.

[15]  J R Taylor,et al.  Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. , 2006, Optics express.

[16]  A. Ravishankara,et al.  Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy , 2006 .

[17]  Roberto Raiteri,et al.  Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection , 2006 .

[18]  J. D. Ayers,et al.  Off-axis cavity ringdown spectroscopy: application to atmospheric nitrate radical detection. , 2005, Applied optics.

[19]  C. Vallance Innovations in cavity ringdown spectroscopy , 2005 .

[20]  A. Ruth,et al.  Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids , 2005 .

[21]  M. Sfeir,et al.  Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering , 2004, Science.

[22]  Roderic L. Jones,et al.  Broadband cavity enhanced absorption spectroscopy using light emitting diodes , 2004 .

[23]  Daniele Romanini,et al.  High sensitivity broad-band mode-locked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and ion densities , 2004 .

[24]  W Drexler,et al.  Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography. , 2004, Physics in medicine and biology.

[25]  Roderic L Jones,et al.  Broad-band cavity ring-down spectroscopy. , 2003, Chemical reviews.

[26]  A. J. Taylor,et al.  Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres , 2003, Nature.

[27]  E. Salmon,et al.  White-Light Filaments for Atmospheric Analysis , 2003, Science.

[28]  W. Simpson Continuous wave cavity ring-down spectroscopy applied to in situ detection of dinitrogen pentoxide (N2O5) , 2003 .

[29]  E. Eslami,et al.  Mode-locked cavity-enhanced absorption spectroscopy , 2003, 2003 European Quantum Electronics Conference. EQEC 2003 (IEEE Cat No.03TH8665).

[30]  Albert A. Ruth,et al.  Incoherent broad-band cavity-enhanced absorption spectroscopy , 2003 .

[31]  Johannes Orphal,et al.  The visible absorption spectrum of NO3measured by high-resolution Fourier transform spectroscopy: VISIBLE ABSORPTION SPECTRUM OF NO3 , 2003 .

[32]  Scott T. Sanders,et al.  Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy , 2002 .

[33]  Daniele Romanini,et al.  Modelocked cavity--enhanced absorption spectroscopy. , 2002 .

[34]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[35]  J. B. Paul,et al.  Broadband ringdown spectral photography. , 2001, Applied optics.

[36]  Roderic L. Jones,et al.  Broadband cavity ringdown spectroscopy of the NO3 radical , 2001 .

[37]  Jun Ye,et al.  Cavity ringdown heterodyne spectroscopy: High sensitivity with microwatt light power , 2000 .

[38]  A. S. Bhushan,et al.  Time-domain optical sensing , 1999 .

[39]  U. Platt Modern methods of the measurement of atmospheric trace gases , 1999 .

[40]  Rudy Peeters,et al.  Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy , 1998 .

[41]  Ann Carine Vandaele,et al.  Measurements of the NO2 absorption cross-section from 42 000 cm−1 to 10 000 cm−1 (238–1000 nm) at 220 K and 294 K , 1998 .

[42]  Jun Ye,et al.  Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy , 1998 .

[43]  David H. Parker,et al.  Coherent cavity ring down spectroscopy , 1994 .

[44]  James B. Burkholder,et al.  Absorption measurements of oxygen between 330 and 1140 nm , 1990 .

[45]  A. O’Keefe,et al.  Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources , 1988 .