GAN Inversion: A Survey

GAN inversion aims to invert a given image back into the latent space of a pretrained GAN model so that the image can be faithfully reconstructed from the inverted code by the generator. As an emerging technique to bridge the real and fake image domains, GAN inversion plays an essential role in enabling pretrained GAN models, such as StyleGAN and BigGAN, for applications of real image editing. Moreover, GAN inversion interprets GAN’s latent space and examines how realistic images can be generated. In this paper, we provide a survey of GAN inversion with a focus on its representative algorithms and its applications in image restoration and image manipulation. We further discuss the trends and challenges for future research. A curated list of GAN inversion methods, datasets, and other related information can be found at this github site.

[1]  Yinghao Xu,et al.  High-fidelity GAN Inversion with Padding Space , 2022, ECCV.

[2]  Tan M. Dinh,et al.  HyperInverter: Improving StyleGAN Inversion via Hypernetwork , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Wonmin Byeon,et al.  Sound-Guided Semantic Image Manipulation , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Amit H. Bermano,et al.  HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Christian Theobalt,et al.  StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis , 2021, ICLR.

[6]  Peter Wonka,et al.  Mind the Gap: Domain Gap Control for Single Shot Domain Adaptation for Generative Adversarial Networks , 2021, ICLR.

[7]  Fei Yin,et al.  Identity-Guided Face Generation with Multi-modal Contour Conditions , 2021, 2022 IEEE International Conference on Image Processing (ICIP).

[8]  Qifeng Chen,et al.  High-Fidelity GAN Inversion for Image Attribute Editing , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Jung Ho Park,et al.  Do Not Escape From the Manifold: Discovering the Local Coordinates on the Latent Space of GANs , 2021, ICLR.

[10]  Daniel Cohen-Or,et al.  Pivotal Tuning for Latent-based Editing of Real Images , 2021, ACM Trans. Graph..

[11]  Lu Yuan,et al.  E2Style: Improve the Efficiency and Effectiveness of StyleGAN Inversion , 2021, IEEE Transactions on Image Processing.

[12]  Sergey Tulyakov,et al.  InOut: Diverse Image Outpainting via GAN Inversion , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Tao Yu,et al.  PaMIR: Parametric Model-Conditioned Implicit Representation for Image-Based Human Reconstruction , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Jingyi Yu,et al.  SofGAN: A Portrait Image Generator with Dynamic Styling , 2020, ACM Trans. Graph..

[15]  Bo Dai,et al.  Exploiting Deep Generative Prior for Versatile Image Restoration and Manipulation , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Bolei Zhou,et al.  Disentangled Inference for GANs With Latently Invertible Autoencoder , 2019, International Journal of Computer Vision.

[17]  Bolei Zhou,et al.  One-Shot Generative Domain Adaptation , 2021, ArXiv.

[18]  Kyoungkook Kang,et al.  GAN Inversion for Out-of-Range Images with Geometric Transformations , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[19]  Wangmeng Zuo,et al.  Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[20]  Chunyan Miao,et al.  Cycle-Consistent Inverse GAN for Text-to-Image Synthesis , 2021, ACM Multimedia.

[21]  Daniel Cohen-Or,et al.  StyleGAN-NADA , 2021, ACM Trans. Graph..

[22]  Yangyang Xu,et al.  From Continuity to Editability: Inverting GANs with Consecutive Images , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[23]  Jaakko Lehtinen,et al.  Alias-Free Generative Adversarial Networks , 2021, NeurIPS.

[24]  Deli Zhao,et al.  Low-Rank Subspaces in GANs , 2021, NeurIPS.

[25]  Ying Fu,et al.  Disentangled Face Attribute Editing via Instance-Aware Latent Space Search , 2021, IJCAI.

[26]  Zhenan Sun,et al.  One Shot Face Swapping on Megapixels , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Eli Shechtman,et al.  Ensembling with Deep Generative Views , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Avinatan Hassidim,et al.  Explaining in Style: Training a GAN to explain a classifier in StyleSpace , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[29]  Bo Dai,et al.  Unsupervised 3D Shape Completion through GAN Inversion , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Baoyuan Wu,et al.  Towards Open-World Text-Guided Face Image Generation and Manipulation , 2021, ArXiv.

[31]  Daniel Cohen-Or,et al.  ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[32]  Daniel Cohen-Or,et al.  StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[33]  Yoshihiro Kanamori,et al.  Few-shot Semantic Image Synthesis Using StyleGAN Prior , 2021, ArXiv.

[34]  Peter Wonka,et al.  Labels4Free: Unsupervised Segmentation using StyleGAN , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[35]  Antonio Torralba,et al.  Paint by Word , 2021, ArXiv.

[36]  Phillip Isola,et al.  Using latent space regression to analyze and leverage compositionality in GANs , 2021, ICLR.

[37]  Supasorn Suwajanakorn,et al.  Repurposing GANs for One-Shot Semantic Part Segmentation , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Graham W. Taylor,et al.  LOHO: Latent Optimization of Hairstyles via Orthogonalization , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Ilya Sutskever,et al.  Learning Transferable Visual Models From Natural Language Supervision , 2021, ICML.

[40]  Varun A. Kelkar,et al.  Prior Image-Constrained Reconstruction using Style-Based Generative Models , 2021, ICML.

[41]  Alexandros G. Dimakis,et al.  Intermediate Layer Optimization for Inverse Problems using Deep Generative Models , 2021, ICML.

[42]  Quoc V. Le,et al.  Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision , 2021, ICML.

[43]  Only a Matter of Style: Age Transformation Using a Style-Based Regression Model , 2021, 2102.02754.

[44]  Daniel Cohen-Or,et al.  Designing an encoder for StyleGAN image manipulation , 2021, ACM Trans. Graph..

[45]  Oluwasanmi Koyejo,et al.  Enjoy Your Editing: Controllable GANs for Image Editing via Latent Space Navigation , 2021, ICLR.

[46]  Ron Banner,et al.  GAN Steerability without optimization , 2020, ICLR.

[47]  Jiajun Wu,et al.  pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Mario Fritz,et al.  Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Artem Babenko,et al.  Navigating the GAN Parameter Space for Semantic Image Editing , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Dani Lischinski,et al.  StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Chen Change Loy,et al.  Do 2D GANs Know 3D Shape? Unsupervised 3D shape reconstruction from 2D Image GANs , 2020, ICLR.

[52]  N. Mitra,et al.  StyleFlow: Attribute-conditioned Exploration of StyleGAN-Generated Images using Conditional Continuous Normalizing Flows , 2020, ACM Trans. Graph..

[53]  Jonathan T. Barron,et al.  NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Daniel Cohen-Or,et al.  Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[55]  Bolei Zhou,et al.  Generative Hierarchical Features from Synthesizing Images , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[56]  Bolei Zhou,et al.  Closed-Form Factorization of Latent Semantics in GANs , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Interpreting the Latent Space of GANs via Correlation Analysis for Controllable Concept Manipulation , 2020, 2020 25th International Conference on Pattern Recognition (ICPR).

[58]  Hailin Jin,et al.  Neural Architecture Search for Deep Image Prior , 2020, Comput. Graph..

[59]  Jing-Hao Xue,et al.  Domain Fingerprints for No-Reference Image Quality Assessment , 2019, IEEE Transactions on Circuits and Systems for Video Technology.

[60]  Nenghai Yu,et al.  A Simple Baseline for StyleGAN Inversion , 2021, ArXiv.

[61]  Sergey Tulyakov,et al.  InfinityGAN: Towards Infinite-Resolution Image Synthesis , 2021, ArXiv.

[62]  Kenneth A. Iczkowski,et al.  High-resolution Controllable Prostatic Histology Synthesis using StyleGAN , 2021, BIOIMAGING.

[63]  David Whitney,et al.  Controllable Medical Image Generation via Generative Adversarial Networks , 2021, HVEI.

[64]  Peter Wonka,et al.  Improved StyleGAN Embedding: Where are the Good Latents? , 2020, ArXiv.

[65]  Baoyuan Wu,et al.  TediGAN: Text-Guided Diverse Image Generation and Manipulation , 2020, ArXiv.

[66]  Stuart Crozier,et al.  Manipulating Medical Image Translation with Manifold Disentanglement , 2020, 2023 International Conference on Digital Image Computing: Techniques and Applications (DICTA).

[67]  Yu-Ding Lu,et al.  Unsupervised Discovery of Disentangled Manifolds in GANs , 2020, ArXiv.

[68]  Qi Li,et al.  Style Intervention: How to Achieve Spatial Disentanglement with Style-based Generators? , 2020, ArXiv.

[69]  Yujiu Yang,et al.  Controllable Continuous Gaze Redirection , 2020, ACM Multimedia.

[70]  Christian Theobalt,et al.  PIE , 2020, ACM Trans. Graph..

[71]  Ronald Clark,et al.  LaDDer: Latent Data Distribution Modelling with a Generative Prior , 2020, BMVC.

[72]  Chen Gao,et al.  NAS-DIP: Learning Deep Image Prior with Neural Architecture Search , 2020, ECCV.

[73]  Bingbing Ni,et al.  Hierarchical Style-based Networks for Motion Synthesis , 2020, ECCV.

[74]  David Bau,et al.  Rewriting a Deep Generative Model , 2020, ECCV.

[75]  Yidong Li,et al.  CelebA-Spoof: Large-Scale Face Anti-Spoofing Dataset with Rich Annotations , 2020, ECCV.

[76]  Bharat Lal Bhatnagar,et al.  Combining Implicit Function Learning and Parametric Models for 3D Human Reconstruction , 2020, ECCV.

[77]  Lin Gao,et al.  DeepFaceDrawing: deep generation of face images from sketches , 2020, ACM Trans. Graph..

[78]  Ling Xie,et al.  A Free Viewpoint Portrait Generator with Dynamic Styling , 2020, ArXiv.

[79]  Bingbing Ni,et al.  Collaborative Learning for Faster StyleGAN Embedding , 2020, ArXiv.

[80]  Michael Elad,et al.  When and How Can Deep Generative Models be Inverted? , 2020, ArXiv.

[81]  L. Gool,et al.  SRFlow: Learning the Super-Resolution Space with Normalizing Flow , 2020, ECCV.

[82]  Tommy Löfstedt,et al.  Latent Space Manipulation for High-Resolution Medical Image Synthesis via the StyleGAN. , 2020, Zeitschrift fur medizinische Physik.

[83]  Stefano Soatto,et al.  Geo-PIFu: Geometry and Pixel Aligned Implicit Functions for Single-view Human Reconstruction , 2020, NeurIPS.

[84]  Tero Karras,et al.  Training Generative Adversarial Networks with Limited Data , 2020, NeurIPS.

[85]  Mark Chen,et al.  Language Models are Few-Shot Learners , 2020, NeurIPS.

[86]  Yun-Ta Tsai,et al.  Portrait shadow manipulation , 2020, ACM Trans. Graph..

[87]  C. V. Jawahar,et al.  Learning Individual Speaking Styles for Accurate Lip to Speech Synthesis , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[88]  Daniel Cohen-Or,et al.  Face identity disentanglement via latent space mapping , 2020, ACM Trans. Graph..

[89]  Daniel Cohen-Or,et al.  Disentangling in Latent Space by Harnessing a Pretrained Generator , 2020, ArXiv.

[90]  Minyoung Huh,et al.  Transforming and Projecting Images into Class-conditional Generative Networks , 2020, ECCV.

[91]  Raja Bala,et al.  Editing in Style: Uncovering the Local Semantics of GANs , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[92]  Bjorn Ommer,et al.  A Disentangling Invertible Interpretation Network for Explaining Latent Representations , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[93]  Noah Snavely,et al.  Single-View View Synthesis With Multiplane Images , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[94]  Stanislav Pidhorskyi,et al.  Adversarial Latent Autoencoders , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[95]  Aaron Hertzmann,et al.  GANSpace: Discovering Interpretable GAN Controls , 2020, NeurIPS.

[96]  Hanbyul Joo,et al.  PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[97]  Christian Theobalt,et al.  StyleRig: Rigging StyleGAN for 3D Control Over Portrait Images , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[98]  Bolei Zhou,et al.  In-Domain GAN Inversion for Real Image Editing , 2020, ECCV.

[99]  Xiang Bai,et al.  Semantically Multi-Modal Image Synthesis , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[100]  Aaron Courville,et al.  Pix2Shape: Towards Unsupervised Learning of 3D Scenes from Images Using a View-Based Representation , 2020, International Journal of Computer Vision.

[101]  C. Rudin,et al.  PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[102]  Vladimir Ivashkin,et al.  StyleGAN2 Distillation for Feed-forward Image Manipulation , 2020, ECCV.

[103]  Yong-Liang Yang,et al.  BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images , 2020, NeurIPS.

[104]  Artem Babenko,et al.  Unsupervised Discovery of Interpretable Directions in the GAN Latent Space , 2020, ICML.

[105]  C'eline Hudelot,et al.  Controlling generative models with continuous factors of variations , 2020, ICLR.

[106]  M. Zollhöfer,et al.  Learning Dynamic Textures for Neural Rendering of Human Actors , 2020, IEEE Transactions on Visualization and Computer Graphics.

[107]  Jayaraman J. Thiagarajan,et al.  MimicGAN: Robust Projection onto Image Manifolds with Corruption Mimicking , 2019, International Journal of Computer Vision.

[108]  Bolei Zhou,et al.  Image Processing Using Multi-Code GAN Prior , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[109]  Thomas Lukasiewicz,et al.  ManiGAN: Text-Guided Image Manipulation , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[110]  Jung-Woo Ha,et al.  StarGAN v2: Diverse Image Synthesis for Multiple Domains , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[111]  Tero Karras,et al.  Analyzing and Improving the Image Quality of StyleGAN , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[112]  Peter Wonka,et al.  SEAN: Image Synthesis With Semantic Region-Adaptive Normalization , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[113]  Alexandros G. Dimakis,et al.  Your Local GAN: Designing Two Dimensional Local Attention Mechanisms for Generative Models , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[114]  Peter Wonka,et al.  Image2StyleGAN++: How to Edit the Embedded Images? , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[115]  A. Vedaldi,et al.  Unsupervised Learning of Probably Symmetric Deformable 3D Objects From Images in the Wild , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[116]  T. Vetter,et al.  3D Morphable Face Models—Past, Present, and Future , 2019, ACM Trans. Graph..

[117]  Lingyun Wu,et al.  MaskGAN: Towards Diverse and Interactive Facial Image Manipulation , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[118]  Bolei Zhou,et al.  Interpreting the Latent Space of GANs for Semantic Face Editing , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[119]  Phillip Isola,et al.  On the "steerability" of generative adversarial networks , 2019, ICLR.

[120]  Raja Giryes,et al.  Image-Adaptive GAN based Reconstruction , 2019, AAAI.

[121]  Vladislav Voroninski,et al.  Global Guarantees for Enforcing Deep Generative Priors by Empirical Risk , 2017, IEEE Transactions on Information Theory.

[122]  Baoyuan Wu,et al.  Boosting Decision-Based Black-Box Adversarial Attacks with Random Sign Flip , 2020, ECCV.

[123]  Baoyuan Wu,et al.  Sparse Adversarial Attack via Perturbation Factorization , 2020, ECCV.

[124]  Victor Lempitsky,et al.  DeepLandscape: Adversarial Modeling of Landscape Videos , 2020, ECCV.

[125]  Tatsuya Harada,et al.  Self-supervised Learning of 3D Objects from Natural Images , 2019, ArXiv.

[126]  Jing-Hao Xue,et al.  Cooperative Semantic Segmentation and Image Restoration in Adverse Environmental Conditions , 2019, 1911.00679.

[127]  Yujiu Yang,et al.  Cali-Sketch: Stroke Calibration and Completion for High-Quality Face Image Generation from Poorly-Drawn Sketches , 2019, ArXiv.

[128]  Bolei Zhou,et al.  Seeing What a GAN Cannot Generate , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[129]  David W. Jacobs,et al.  Deep Single-Image Portrait Relighting , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[130]  Alexei A. Efros,et al.  Interactive Sketch & Fill: Multiclass Sketch-to-Image Translation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[131]  Sabine Süsstrunk,et al.  Deep Feature Factorization for Content-Based Image Retrieval and Localization , 2019, 2019 IEEE International Conference on Image Processing (ICIP).

[132]  Seungryong Kim,et al.  Unpaired Cross-Spectral Pedestrian Detection Via Adversarial Feature Learning , 2019, 2019 IEEE International Conference on Image Processing (ICIP).

[133]  Philip H. S. Torr,et al.  Controllable Text-to-Image Generation , 2019, NeurIPS.

[134]  Bolei Zhou,et al.  Semantic photo manipulation with a generative image prior , 2019, ACM Trans. Graph..

[135]  Jeff Donahue,et al.  Large Scale Adversarial Representation Learning , 2019, NeurIPS.

[136]  Aude Oliva,et al.  GANalyze: Toward Visual Definitions of Cognitive Image Properties , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[137]  Alexandros G. Dimakis,et al.  Inverting Deep Generative models, One layer at a time , 2019, NeurIPS.

[138]  Yedid Hoshen,et al.  Style Generator Inversion for Image Enhancement and Animation , 2019, ArXiv.

[139]  Ran Yi,et al.  APDrawingGAN: Generating Artistic Portrait Drawings From Face Photos With Hierarchical GANs , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[140]  Long Chen,et al.  DSNet: Joint Learning for Scene Segmentation and Disparity Estimation , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[141]  Tali Dekel,et al.  SinGAN: Learning a Generative Model From a Single Natural Image , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[142]  Yun-Ta Tsai,et al.  Single image portrait relighting , 2019, ACM Trans. Graph..

[143]  Josep Lladós,et al.  Doodle to Search: Practical Zero-Shot Sketch-Based Image Retrieval , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[144]  Peter Wonka,et al.  Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space? , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[145]  Zhe He,et al.  Photo-Realistic Monocular Gaze Redirection Using Generative Adversarial Networks , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[146]  Siwei Ma,et al.  Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[147]  Rama Chellappa,et al.  Unsupervised Domain-Specific Deblurring via Disentangled Representations , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[148]  Yuqi Li,et al.  GAN-Based Projector for Faster Recovery With Convergence Guarantees in Linear Inverse Problems , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[149]  Ruimao Zhang,et al.  DeepFashion2: A Versatile Benchmark for Detection, Pose Estimation, Segmentation and Re-Identification of Clothing Images , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[150]  Jie Song,et al.  Monocular Neural Image Based Rendering With Continuous View Control , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[151]  Timo Aila,et al.  A Style-Based Generator Architecture for Generative Adversarial Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[152]  Hao Zhang,et al.  Learning Implicit Fields for Generative Shape Modeling , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[153]  Jeff Donahue,et al.  Large Scale GAN Training for High Fidelity Natural Image Synthesis , 2018, ICLR.

[154]  Bolei Zhou,et al.  GAN Dissection: Visualizing and Understanding Generative Adversarial Networks , 2018, ICLR.

[155]  Paul Babyn,et al.  Generative Adversarial Network in Medical Imaging: A Review , 2018, Medical Image Anal..

[156]  Ian D. Reid,et al.  Real-Time Joint Semantic Segmentation and Depth Estimation Using Asymmetric Annotations , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[157]  Anil A. Bharath,et al.  Inverting the Generator of a Generative Adversarial Network , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[158]  Reinhard Heckel,et al.  A Provably Convergent Scheme for Compressive Sensing Under Random Generative Priors , 2018, Journal of Fourier Analysis and Applications.

[159]  Yann LeCun,et al.  A Spectral Regularizer for Unsupervised Disentanglement , 2018, ArXiv.

[160]  Tiejun Huang,et al.  Cross-Domain Adversarial Feature Learning for Sketch Re-identification , 2018, ACM Multimedia.

[161]  Yu-Chiang Frank Wang,et al.  A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation , 2018, NeurIPS.

[162]  Maneesh Kumar Singh,et al.  DRIT++: Diverse Image-to-Image Translation via Disentangled Representations , 2019, International Journal of Computer Vision.

[163]  Ming-Hsuan Yang,et al.  Flow-Grounded Spatial-Temporal Video Prediction from Still Images , 2018, ECCV.

[164]  Chen Zhang,et al.  Multi-view Adversarially Learned Inference for Cross-domain Joint Distribution Matching , 2018, KDD.

[165]  Kibok Lee,et al.  A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks , 2018, NeurIPS.

[166]  Alan Chauvin,et al.  The Caucasian and North African French Faces (CaNAFF): A Face Database , 2018 .

[167]  Prafulla Dhariwal,et al.  Glow: Generative Flow with Invertible 1x1 Convolutions , 2018, NeurIPS.

[168]  Sabine Süsstrunk,et al.  Deep Feature Factorization For Concept Discovery , 2018, ECCV.

[169]  Kilian Q. Weinberger,et al.  An empirical study on evaluation metrics of generative adversarial networks , 2018, ArXiv.

[170]  Alex ChiChung Kot,et al.  Domain Generalization with Adversarial Feature Learning , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[171]  Patrick Nguyen,et al.  Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis , 2018, NeurIPS.

[172]  Stefan Sommer,et al.  Latent Space Non-Linear Statistics , 2018, ArXiv.

[173]  Jan Kautz,et al.  Multimodal Unsupervised Image-to-Image Translation , 2018, ECCV.

[174]  Chinmay Hegde,et al.  Solving Linear Inverse Problems Using Gan Priors: An Algorithm with Provable Guarantees , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[175]  Kamyar Azizzadenesheli,et al.  Stochastic Activation Pruning for Robust Adversarial Defense , 2018, ICLR.

[176]  Yuichi Yoshida,et al.  Spectral Normalization for Generative Adversarial Networks , 2018, ICLR.

[177]  Rama Chellappa,et al.  Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models , 2018, ICLR.

[178]  Aaron C. Courville,et al.  Hierarchical Adversarially Learned Inference , 2018, ArXiv.

[179]  Alexei A. Efros,et al.  The Unreasonable Effectiveness of Deep Features as a Perceptual Metric , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[180]  Jan Kautz,et al.  High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[181]  Andrea Vedaldi,et al.  Deep Image Prior , 2017, International Journal of Computer Vision.

[182]  Zhe Gan,et al.  AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[183]  Jaakko Lehtinen,et al.  Progressive Growing of GANs for Improved Quality, Stability, and Variation , 2017, ICLR.

[184]  David Lopez-Paz,et al.  Optimizing the Latent Space of Generative Networks , 2017, ICML.

[185]  Peter Robinson,et al.  GazeDirector: Fully Articulated Eye Gaze Redirection in Video , 2017, Comput. Graph. Forum.

[186]  S. R. Livingstone,et al.  The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English , 2018, PloS one.

[187]  Harshad Rai,et al.  Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks , 2018 .

[188]  Simon Hessner,et al.  Image Style Transfer using Convolutional Neural Networks , 2018 .

[189]  Sertac Karaman,et al.  Invertibility of Convolutional Generative Networks from Partial Measurements , 2018, NeurIPS.

[190]  Alexei A. Efros,et al.  Toward Multimodal Image-to-Image Translation , 2017, NIPS.

[191]  Deqing Sun,et al.  Learning to Super-Resolve Blurry Face and Text Images , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[192]  Lawrence Carin,et al.  ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching , 2017, NIPS.

[193]  Matthias Zwicker,et al.  Deep Mean-Shift Priors for Image Restoration , 2017, NIPS.

[194]  Roland Vollgraf,et al.  Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms , 2017, ArXiv.

[195]  Sepp Hochreiter,et al.  GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium , 2017, NIPS.

[196]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[197]  Graham Neubig,et al.  Controllable Invariance through Adversarial Feature Learning , 2017, NIPS.

[198]  Kibok Lee,et al.  Towards Understanding the Invertibility of Convolutional Neural Networks , 2017, IJCAI.

[199]  Iain Murray,et al.  Masked Autoregressive Flow for Density Estimation , 2017, NIPS.

[200]  Wangmeng Zuo,et al.  Learning Deep CNN Denoiser Prior for Image Restoration , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[201]  Aaron C. Courville,et al.  Improved Training of Wasserstein GANs , 2017, NIPS.

[202]  Ian S. Fischer,et al.  Adversarial Transformation Networks: Learning to Generate Adversarial Examples , 2017, ArXiv.

[203]  Serge J. Belongie,et al.  Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[204]  Alexandros G. Dimakis,et al.  Compressed Sensing using Generative Models , 2017, ICML.

[205]  Ming-Hsuan Yang,et al.  Deep Image Harmonization , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[206]  Subarna Tripathi,et al.  Precise Recovery of Latent Vectors from Generative Adversarial Networks , 2017, ICLR.

[207]  Xi Chen,et al.  PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications , 2017, ICLR.

[208]  Kristen Grauman,et al.  Semantic Jitter: Dense Supervision for Visual Comparisons via Synthetic Images , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[209]  Chih-Yuan Yang,et al.  Learning a No-Reference Quality Metric for Single-Image Super-Resolution , 2016, Comput. Vis. Image Underst..

[210]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[211]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[212]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[213]  Kevin Gimpel,et al.  A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks , 2016, ICLR.

[214]  Quoc V. Le,et al.  HyperNetworks , 2016, ICLR.

[215]  Lei Zhang,et al.  Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising , 2016, IEEE Transactions on Image Processing.

[216]  Max Welling,et al.  Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.

[217]  Aaron C. Courville,et al.  Adversarially Learned Inference , 2016, ICLR.

[218]  Trevor Darrell,et al.  Adversarial Feature Learning , 2016, ICLR.

[219]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[220]  Yunjin Chen,et al.  Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[221]  Yingtao Tian,et al.  Towards the High-quality Anime Characters Generation with Generative Adversarial Networks , 2017 .

[222]  Bogdan Raducanu,et al.  Invertible Conditional GANs for image editing , 2016, ArXiv.

[223]  Tom White,et al.  Sampling Generative Networks: Notes on a Few Effective Techniques , 2016, ArXiv.

[224]  Alexei A. Efros,et al.  Generative Visual Manipulation on the Natural Image Manifold , 2016, ECCV.

[225]  Heiga Zen,et al.  WaveNet: A Generative Model for Raw Audio , 2016, SSW.

[226]  Xiaogang Wang,et al.  Fashion Landmark Detection in the Wild , 2016, ECCV.

[227]  Victor S. Lempitsky,et al.  DeepWarp: Photorealistic Image Resynthesis for Gaze Manipulation , 2016, ECCV.

[228]  Leon A. Gatys,et al.  Image Style Transfer Using Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[229]  Xiaogang Wang,et al.  DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[230]  Carl Doersch,et al.  Tutorial on Variational Autoencoders , 2016, ArXiv.

[231]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[232]  Thomas Brox,et al.  Synthesizing the preferred inputs for neurons in neural networks via deep generator networks , 2016, NIPS.

[233]  Gregory Shakhnarovich,et al.  Learning Representations for Automatic Colorization , 2016, ECCV.

[234]  Honglak Lee,et al.  Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units , 2016, ICML.

[235]  Koray Kavukcuoglu,et al.  Pixel Recurrent Neural Networks , 2016, ICML.

[236]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[237]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[238]  Mohinder Malhotra Single Image Haze Removal Using Dark Channel Prior , 2016 .

[239]  Navdeep Jaitly,et al.  Adversarial Autoencoders , 2015, ArXiv.

[240]  Yinda Zhang,et al.  LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop , 2015, ArXiv.

[241]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[242]  Hugo Larochelle,et al.  MADE: Masked Autoencoder for Distribution Estimation , 2015, ICML.

[243]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[244]  Xiaogang Wang,et al.  Deep Learning Face Attributes in the Wild , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[245]  Yoshua Bengio,et al.  NICE: Non-linear Independent Components Estimation , 2014, ICLR.

[246]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[247]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[248]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[249]  Bolei Zhou,et al.  Learning Deep Features for Scene Recognition using Places Database , 2014, NIPS.

[250]  B. Laeng,et al.  Rewards of beauty: the opioid system mediates social motivation in humans , 2014, Molecular Psychiatry.

[251]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[252]  Chu-Song Chen,et al.  Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval , 2014, ECCV.

[253]  Kristen Grauman,et al.  Fine-Grained Visual Comparisons with Local Learning , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[254]  Ramesh Raskar,et al.  Streetscore -- Predicting the Perceived Safety of One Million Streetscapes , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[255]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[256]  Jonathan Krause,et al.  3D Object Representations for Fine-Grained Categorization , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[257]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[258]  Nitish Srivastava,et al.  Multimodal learning with deep Boltzmann machines , 2012, J. Mach. Learn. Res..

[259]  Klaus-Robert Müller,et al.  Deep Boltzmann Machines and the Centering Trick , 2012, Neural Networks: Tricks of the Trade.

[260]  Marc Alexa,et al.  Sketch-Based Image Retrieval: Benchmark and Bag-of-Features Descriptors , 2011, IEEE Transactions on Visualization and Computer Graphics.

[261]  Pascal Vincent,et al.  Contractive Auto-Encoders: Explicit Invariance During Feature Extraction , 2011, ICML.

[262]  Julien Rabin,et al.  Wasserstein Barycenter and Its Application to Texture Mixing , 2011, SSVM.

[263]  Francis R. Bach,et al.  Online Learning for Latent Dirichlet Allocation , 2010, NIPS.

[264]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[265]  Hugo Larochelle,et al.  Efficient Learning of Deep Boltzmann Machines , 2010, AISTATS.

[266]  Davis E. King,et al.  Dlib-ml: A Machine Learning Toolkit , 2009, J. Mach. Learn. Res..

[267]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[268]  Geoffrey E. Hinton,et al.  Deep Boltzmann Machines , 2009, AISTATS.

[269]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[270]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[271]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[272]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[273]  Chih-Jen Lin,et al.  Projected Gradient Methods for Nonnegative Matrix Factorization , 2007, Neural Computation.

[274]  M.E. Davies,et al.  Source separation using single channel ICA , 2007, Signal Process..

[275]  Daniel Cohen-Or,et al.  Color harmonization , 2006, ACM Trans. Graph..

[276]  E.J. Candes Compressive Sampling , 2022 .

[277]  Michael J. Black,et al.  Fields of Experts: a framework for learning image priors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[278]  Yann LeCun,et al.  The mnist database of handwritten digits , 2005 .

[279]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[280]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[281]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[282]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[283]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[284]  Song-Chun Zhu,et al.  Prior Learning and Gibbs Reaction-Diffusion , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[285]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[286]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[287]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[288]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[289]  A. Kennedy,et al.  Hybrid Monte Carlo , 1988 .

[290]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[291]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[292]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[293]  Teuvo Kohonen,et al.  Representation of Associated Data by Matrix Operators , 1973, IEEE Transactions on Computers.

[294]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[295]  Michael D. Geurts,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[296]  H. Harman Modern factor analysis , 1961 .