On quantitative uniqueness for elliptic equations
暂无分享,去创建一个
[1] I. Kukavica,et al. Quantitative unique continuation for a parabolic equation , 2017, 1711.06730.
[2] I. Kukavica,et al. A local asymptotic expansion for a solution of the Stokes system , 2016, 1712.00092.
[3] C. Kenig,et al. On Landis’ Conjecture in the Plane , 2014, 1404.2496.
[4] Laurent Bakri. Carleman Estimates for the Schrödinger Operator. Applications to Quantitative Uniqueness , 2013 .
[5] Jean-Baptiste Casteras,et al. Quantitative uniqueness for Schrödinger operator with regular potentials , 2012, 1203.3720.
[6] I. Kukavica,et al. Strong unique continuation for higher order elliptic equations with Gevrey coefficients , 2012 .
[7] C. Kenig. Quantitative unique continuation, logarithmic convexity of Gaussian means and Hardy's uncertainty principle , 2008 .
[8] G. Alessandrini,et al. On doubling inequalities for elliptic systems , 2008, 0810.0115.
[9] Giovanni Alessandrini,et al. Null–controllability of One–dimensional Parabolic Equations , 2006 .
[10] Herbert Koch,et al. Carleman Estimates and Unique Continuation for Second Order Parabolic Equations with Nonsmooth Coefficients , 2007, 0704.1349.
[11] S. Vessella,et al. Doubling properties of caloric functions , 2006, math/0611462.
[12] J. Bourgain,et al. On localization in the continuous Anderson-Bernoulli model in higher dimension , 2005 .
[13] S. Vessella. CARLEMAN ESTIMATES, OPTIMAL THREE CYLINDER INEQUALITIES AND UNIQUE CONTINUATION PROPERTIES FOR PARABOLIC OPERATORS , 2003 .
[14] L. Escauriaza,et al. Unique continuation for parabolic operators , 2003 .
[15] D. Tataru,et al. Sharp counterexamples in unique continuation for second order elliptic equations , 2002 .
[16] S. Vessella,et al. Quantitative estimates of unique continuation for parabolic equations and inverse initial-boundary value problems with unknown boundaries , 2001 .
[17] Herbert Koch,et al. Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients , 2001 .
[18] I. Kukavica. Quantitative Uniqueness and Vortex Degree Estimates for Solutions of the Ginzburg-Landau Equation , 2000 .
[19] L. Escauriaza. Carleman inequalities and the heat operator , 2000 .
[20] Igor Kukavica,et al. Quantitative uniqueness for second-order elliptic operators , 1998 .
[21] Chi-Cheung Poon. Qnique Continuation for , 1996 .
[22] T. Wolff. Note on counterexamples in strong unique continuation problems , 1992 .
[23] F. Lin. Nodal sets of solutions of elliptic and parabolic equations , 1991 .
[24] Christopher D. Sogge,et al. STRONG UNIQUENESS THEOREMS FOR SECOND ORDER ELLIPTIC DIFFERENTIAL EQUATIONS , 1990 .
[25] C. Sogge. A unique continuation theorem for second order parabolic differential operators , 1990 .
[26] C. Fefferman,et al. Nodal sets of eigenfunctions on Reimannian manifolds , 1988 .
[27] Elias M. Stein,et al. Unique continuation and absence of positive eigenvalues for Schrodinger operators , 1985 .
[28] Shmuel Agmon,et al. Lower Bounds and Uniqueness Theorems for Solutions of Differential Equations in a Hilbert Space , 1967 .
[29] Laurent Bakri. Quantitative uniqueness for Schroedinger operator , 2012 .
[30] N. Mandache. A counterexample to unique continuation in dimension two , 2002 .
[31] L. Vega,et al. Carleman inequalities and the heat operator II , 2001 .
[32] Carlos E. Kenig,et al. A Counterexample in Unique Continuation , 2000 .
[33] I. Kukavica. Self-similar variables and the complex ginzburg-landau equation , 1999 .
[34] T. Wolff. A counterexample in a unique continuation problem , 1994 .
[35] C. Kenig. Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique continuation , 1989 .
[36] G. Alessandrini,et al. Local behaviour of solutions to parabolic equations parabolic equations , 1988 .
[37] F. Lin,et al. Monotonicity properties of variational integrals, ap weights and unique continuation , 1986 .
[38] L. Hormander. Uniqueness theorems for second order elliptic difierential equations , 1983 .