On quantitative uniqueness for elliptic equations

[1]  I. Kukavica,et al.  Quantitative unique continuation for a parabolic equation , 2017, 1711.06730.

[2]  I. Kukavica,et al.  A local asymptotic expansion for a solution of the Stokes system , 2016, 1712.00092.

[3]  C. Kenig,et al.  On Landis’ Conjecture in the Plane , 2014, 1404.2496.

[4]  Laurent Bakri Carleman Estimates for the Schrödinger Operator. Applications to Quantitative Uniqueness , 2013 .

[5]  Jean-Baptiste Casteras,et al.  Quantitative uniqueness for Schrödinger operator with regular potentials , 2012, 1203.3720.

[6]  I. Kukavica,et al.  Strong unique continuation for higher order elliptic equations with Gevrey coefficients , 2012 .

[7]  C. Kenig Quantitative unique continuation, logarithmic convexity of Gaussian means and Hardy's uncertainty principle , 2008 .

[8]  G. Alessandrini,et al.  On doubling inequalities for elliptic systems , 2008, 0810.0115.

[9]  Giovanni Alessandrini,et al.  Null–controllability of One–dimensional Parabolic Equations , 2006 .

[10]  Herbert Koch,et al.  Carleman Estimates and Unique Continuation for Second Order Parabolic Equations with Nonsmooth Coefficients , 2007, 0704.1349.

[11]  S. Vessella,et al.  Doubling properties of caloric functions , 2006, math/0611462.

[12]  J. Bourgain,et al.  On localization in the continuous Anderson-Bernoulli model in higher dimension , 2005 .

[13]  S. Vessella CARLEMAN ESTIMATES, OPTIMAL THREE CYLINDER INEQUALITIES AND UNIQUE CONTINUATION PROPERTIES FOR PARABOLIC OPERATORS , 2003 .

[14]  L. Escauriaza,et al.  Unique continuation for parabolic operators , 2003 .

[15]  D. Tataru,et al.  Sharp counterexamples in unique continuation for second order elliptic equations , 2002 .

[16]  S. Vessella,et al.  Quantitative estimates of unique continuation for parabolic equations and inverse initial-boundary value problems with unknown boundaries , 2001 .

[17]  Herbert Koch,et al.  Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients , 2001 .

[18]  I. Kukavica Quantitative Uniqueness and Vortex Degree Estimates for Solutions of the Ginzburg-Landau Equation , 2000 .

[19]  L. Escauriaza Carleman inequalities and the heat operator , 2000 .

[20]  Igor Kukavica,et al.  Quantitative uniqueness for second-order elliptic operators , 1998 .

[21]  Chi-Cheung Poon Qnique Continuation for , 1996 .

[22]  T. Wolff Note on counterexamples in strong unique continuation problems , 1992 .

[23]  F. Lin Nodal sets of solutions of elliptic and parabolic equations , 1991 .

[24]  Christopher D. Sogge,et al.  STRONG UNIQUENESS THEOREMS FOR SECOND ORDER ELLIPTIC DIFFERENTIAL EQUATIONS , 1990 .

[25]  C. Sogge A unique continuation theorem for second order parabolic differential operators , 1990 .

[26]  C. Fefferman,et al.  Nodal sets of eigenfunctions on Reimannian manifolds , 1988 .

[27]  Elias M. Stein,et al.  Unique continuation and absence of positive eigenvalues for Schrodinger operators , 1985 .

[28]  Shmuel Agmon,et al.  Lower Bounds and Uniqueness Theorems for Solutions of Differential Equations in a Hilbert Space , 1967 .

[29]  Laurent Bakri Quantitative uniqueness for Schroedinger operator , 2012 .

[30]  N. Mandache A counterexample to unique continuation in dimension two , 2002 .

[31]  L. Vega,et al.  Carleman inequalities and the heat operator II , 2001 .

[32]  Carlos E. Kenig,et al.  A Counterexample in Unique Continuation , 2000 .

[33]  I. Kukavica Self-similar variables and the complex ginzburg-landau equation , 1999 .

[34]  T. Wolff A counterexample in a unique continuation problem , 1994 .

[35]  C. Kenig Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique continuation , 1989 .

[36]  G. Alessandrini,et al.  Local behaviour of solutions to parabolic equations parabolic equations , 1988 .

[37]  F. Lin,et al.  Monotonicity properties of variational integrals, ap weights and unique continuation , 1986 .

[38]  L. Hormander Uniqueness theorems for second order elliptic difierential equations , 1983 .