Modeling and solving a large-scale generation expansion planning problem under uncertainty

We formulate a generation expansion planning problem to determine the type and quantity of power plants to be constructed over each year of an extended planning horizon, considering uncertainty regarding future demand and fuel prices. Our model is expressed as a two-stage stochastic mixed-integer program, which we use to compute solutions independently minimizing the expected cost and the Conditional Value-at-Risk; i.e., the risk of significantly larger-than-expected operational costs. We introduce stochastic process models to capture demand and fuel price uncertainty, which are in turn used to generate trees that accurately represent the uncertainty space. Using a realistic problem instance based on the Midwest US, we explore two fundamental, unexplored issues that arise when solving any stochastic generation expansion model. First, we introduce and discuss the use of an algorithm for computing confidence intervals on obtained solution costs, to account for the fact that a finite sample of scenarios was used to obtain a particular solution. Second, we analyze the nature of solutions obtained under different parameterizations of this method, to assess whether the recommended solutions themselves are invariant to changes in costs. The issues are critical for decision makers who seek truly robust recommendations for generation expansion planning.

[1]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[2]  The National Institute of Sciences of India , 1963, Nature.

[3]  R. Wets,et al.  L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING. , 1969 .

[4]  R. R. Booth Optimal Generation Planning Considering Uncertainty , 1972 .

[5]  J. Schmee An Introduction to Multivariate Statistical Analysis , 1986 .

[6]  R. Tyrrell Rockafellar,et al.  Scenarios and Policy Aggregation in Optimization Under Uncertainty , 1991, Math. Oper. Res..

[7]  I. Wangensteen,et al.  Stochastic generation expansion planning by means of stochastic dynamic programming , 1991 .

[8]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[9]  Scott A. Malcolm,et al.  Robust Optimization for Power Systems Capacity Expansion under Uncertainty , 1994 .

[10]  F. Famoye Continuous Univariate Distributions, Volume 1 , 1994 .

[11]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[12]  Robert J. Vanderbei,et al.  Robust Optimization of Large-Scale Systems , 1995, Oper. Res..

[13]  Sheldon M. Ross Introduction to Probability Models. , 1995 .

[14]  M. Milligan,et al.  Variance estimates of wind plant capacity credit , 1996 .

[15]  Yoshikazu Fukuyama,et al.  A PARALLEL GENETIC ALGORITHM F GENERATION EXPANSION PLANNIN , 1996 .

[16]  Michael Milligan Measuring wind plant capacity value , 1996 .

[17]  Werner Römisch,et al.  Optimal Power Generation under Uncertainty via Stochastic Programming , 1998 .

[18]  David P. Morton,et al.  Monte Carlo bounding techniques for determining solution quality in stochastic programs , 1999, Oper. Res. Lett..

[19]  Michael Milligan Modelling utility‐scale wind power plants. Part 1: Economics , 1999 .

[20]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[21]  Jitka Dupacová,et al.  Scenarios for Multistage Stochastic Programs , 2000, Ann. Oper. Res..

[22]  Michael Milligan,et al.  Modeling Utility-Scale Wind Power Plants Part 2: Capacity Credit , 2000 .

[23]  Felix Wu,et al.  A Game-Theoretic Model for Generation Expansion Planning: Problem Formulation and Numerical Comparisons , 2001, IEEE Power Engineering Review.

[24]  Stein W. Wallace,et al.  Generating Scenario Trees for Multistage Decision Problems , 2001, Manag. Sci..

[25]  L. Legey,et al.  Generation Expansion Planning: An Iterative Genetic Algorithm Approach , 2002, IEEE Power Engineering Review.

[26]  N. I. Voropai,et al.  Multi-criteria decision analysis techniques in electric power system expansion planning , 2002 .

[27]  F. B. Chaaban,et al.  Power generation expansion planning with environmental consideration for Lebanon , 2002 .

[28]  Shabbir Ahmed,et al.  A Multi-Stage Stochastic Integer Programming Approach for Capacity Expansion under Uncertainty , 2003, J. Glob. Optim..

[29]  N. Growe-Kuska,et al.  Scenario reduction and scenario tree construction for power management problems , 2003, 2003 IEEE Bologna Power Tech Conference Proceedings,.

[30]  Nikolaos V. Sahinidis,et al.  An Approximation Scheme for Stochastic Integer Programs Arising in Capacity Expansion , 2003, Oper. Res..

[31]  Shabbir Ahmed,et al.  On robust optimization of two-stage systems , 2004, Math. Program..

[32]  R. Billinton,et al.  Cost-effective wind energy utilization for reliable power supply , 2004, IEEE Transactions on Energy Conversion.

[33]  Nikolaos V. Sahinidis,et al.  Optimization under uncertainty: state-of-the-art and opportunities , 2004, Comput. Chem. Eng..

[34]  Ted Ralphs,et al.  COmputational INfrastructure for Operations Research (COIN-OR) , 2004 .

[35]  Víctor M. Albornoz,et al.  A two‐stage stochastic integer programming model for a thermal power system expansion , 2004 .

[36]  Theofanis Sapatinas,et al.  Discriminant Analysis and Statistical Pattern Recognition , 2005 .

[37]  E.A. DeMeo,et al.  Wind plant integration [wind power plants] , 2005, IEEE Power and Energy Magazine.

[38]  Geoffrey J. McLachlan,et al.  Discriminant Analysis and Statistical Pattern Recognition: McLachlan/Discriminant Analysis & Pattern Recog , 2005 .

[39]  S. Kannan,et al.  Application and comparison of metaheuristic techniques to generation expansion planning problem , 2005, IEEE Transactions on Power Systems.

[40]  Sarah M. Ryan,et al.  On The Validity of The Geometric Brownian Motion Assumption , 2005 .

[41]  Henrik Lund,et al.  Large-scale integration of wind power into different energy systems , 2005 .

[42]  Rüdiger Schultz,et al.  Conditional Value-at-Risk in Stochastic Programs with Mixed-Integer Recourse , 2006, Math. Program..

[43]  William D'haeseleer,et al.  An analytical formula for the capacity credit of wind power , 2006 .

[44]  A. Laurent A scenario generation algorithm for multistage stochastic programming , 2006 .

[45]  M. O'Malley,et al.  Wind generation, power system operation, and emissions reduction , 2006, IEEE Transactions on Power Systems.

[46]  M. O'Malley,et al.  Establishing the role that wind generation may have in future generation portfolios , 2006, IEEE Transactions on Power Systems.

[47]  Rong Li,et al.  Informs Annual Meeting , 2007 .

[48]  Jose L. Ceciliano Meza,et al.  A Model for the Multiperiod Multiobjective Power Generation Expansion Problem , 2007, IEEE Transactions on Power Systems.

[49]  R. Tyrrell Rockafellar,et al.  Coherent Approaches to Risk in Optimization Under Uncertainty , 2007 .

[50]  A.M. Gonzalez,et al.  Stochastic Joint Optimization of Wind Generation and Pumped-Storage Units in an Electricity Market , 2008, IEEE Transactions on Power Systems.

[51]  William E. Hart,et al.  Formulation and Optimization of Robust Sensor Placement Problems for Drinking Water Contamination Warning Systems , 2009 .

[52]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[53]  H.-J. Haubrich,et al.  Long-term and Expansion Planning for Electrical Networks Considering Uncertainties , 2010 .

[54]  Sheldon M. Ross CHAPTER 10 – Brownian Motion and Stationary Processes , 2010 .

[55]  Werner Römisch,et al.  Stochastic Optimization of Electricity Portfolios: Scenario Tree Modeling and Risk Management , 2010 .

[56]  S. Rebennack Handbook of power systems , 2010 .

[57]  David L. Woodruff,et al.  PySP: Modeling and Solving Stochastic Linear and Mixed-Integer Programs in Python. , 2011 .

[58]  David L. Woodruff,et al.  Long Term Resource Planning for Electric Power Systems Under Uncertainty , 2011 .

[59]  David L. Woodruff,et al.  PySP: modeling and solving stochastic programs in Python , 2012, Mathematical Programming Computation.