Ch. 4. Uniform experimental designs and their applications in industry

[1]  H. Weyl Über die Gleichverteilung von Zahlen mod. Eins , 1916 .

[2]  Norman R. Draper,et al.  Construction of the Set of 256-Run Designs of Resolution $\geqq 5$ and the Set of Even 512-Run Designs of Resolution $\geqq 6$ with Special Reference to the Unique Saturated Designs , 1968 .

[3]  David H. Doehlert,et al.  Uniform Shell Designs , 1970 .

[4]  Norman R. Draper,et al.  Construction of a Set of 512-Run Designs of Resolution $\geqq 5$ and a Set of Even 1024-Run Designs of Resolution $\geqq 6$ , 1970 .

[5]  Tony Warnock,et al.  Computational investigations of low-discrepancy point-sets. , 1972 .

[6]  S. Addelman Statistics for experimenters , 1978 .

[7]  W. G. Hunter,et al.  Minimum Aberration 2k-p Designs , 1980 .

[8]  W. G. Hunter,et al.  Minimum Aberration 2 k–p Designs , 1980 .

[9]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[10]  K Ang,et al.  A NOTE ON UNIFORM DISTRIBUTION AND EXPERIMENTAL DESIGN , 1981 .

[11]  J. Cornell Experiments with Mixtures: Designs, Models and the Analysis of Mixture Data , 1982 .

[12]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[13]  J. E. H. Shaw,et al.  A Quasirandom Approach to Integration in Bayesian Statistics , 1988 .

[14]  Y. Wang,et al.  NUMBER THEORETIC METHODS IN APPLIED STATISTICS (II) , 1990 .

[15]  Dennis K. J. Lin,et al.  On the identity relationships of 2−p designs , 1991 .

[16]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[17]  Dennis K. J. Lin,et al.  Projection properties of Plackett and Burman designs , 1992 .

[18]  K. Fang,et al.  Number-theoretic methods in statistics , 1993 .

[19]  Dennis K. J. Lin,et al.  A new class of supersaturated designs , 1993 .

[20]  T. J. Mitchell,et al.  Bayesian design and analysis of computer experiments: Use of derivatives in surface prediction , 1993 .

[21]  Changbao Wu,et al.  Construction of supersaturated designs through partially aliased interactions , 1993 .

[22]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[23]  C. J. Stone,et al.  The Use of Polynomial Splines and Their Tensor Products in Multivariate Function Estimation , 1994 .

[24]  孙彤,et al.  HMG蛋白质(1+2)的功能研究 , 1995 .

[25]  Kai-Tai Fang,et al.  Designing outer array points , 1995 .

[26]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[27]  Dennis K. J. Lin Generating Systematic Supersaturated Designs , 1995 .

[28]  J HickernellF,et al.  The Uniform Design and Its Applications , 1995 .

[29]  Z Ang Uniform Design Sampling and Its Fine Properties , 1996 .

[30]  Eva Riccomagno,et al.  Experimental Design and Observation for Large Systems , 1996, Journal of the Royal Statistical Society: Series B (Methodological).

[31]  Fang Kaitai,et al.  Uniform design of experiments with mixtures , 1996 .

[32]  Nam-Ky Nguyen An algorithmic approach to constructing supersaturated designs , 1996 .

[33]  Kai-Tai Fang,et al.  An example of a sequential uniform design: Application in capillary electrophoresis , 1997 .

[34]  S. Yamada,et al.  Supersaturated design including an orthogonal base , 1997 .

[35]  Young K. Truong,et al.  Polynomial splines and their tensor products in extended linear modeling: 1994 Wald memorial lecture , 1997 .

[36]  K. Fang,et al.  Application of Threshold-Accepting to the Evaluation of the Discrepancy of a Set of Points , 1997 .

[37]  William Li,et al.  Columnwise-pairwise algorithms with applications to the construction of supersaturated designs , 1997 .

[38]  F. J. Hickernell Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .

[39]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[40]  Peter Winker,et al.  Uniformity and Orthogonality , 1998 .

[41]  Barbara Bogacka,et al.  D- and T-optimum designs for the kinetics of a reversible chemical reaction , 1998 .

[42]  Peter Winker,et al.  Optimal U—Type Designs , 1998 .

[43]  Peter Zinterhof,et al.  Monte Carlo and Quasi-Monte Carlo Methods 1996 , 1998 .

[44]  P. Hellekalek,et al.  Random and Quasi-Random Point Sets , 1998 .

[45]  Ching-Shui Cheng,et al.  Regular fractional factorial designs with minimum aberration and maximum estimation capacity , 1998 .

[46]  Dennis K. J. Lin,et al.  On the identifiability of a supersaturated design , 1998 .

[47]  Jian-hui Jiang,et al.  Uniform design applied to nonlinear multivariate calibration by ANN , 1998 .

[48]  Kai-Tai Fang,et al.  UNIFORM DESIGNS BASED ON LATIN SQUARES , 1999 .

[49]  Fred J. Hickernell,et al.  Goodness-of-fit statistics, discrepancies and robust designs , 1999 .

[50]  Dennis K. J. Lin,et al.  Recent Developments in Supersaturated Designs , 1999 .

[51]  Aloke Dey,et al.  Fractional Factorial Plans , 1999 .

[52]  Dennis K. J. Lin,et al.  Three-level supersaturated designs , 1999 .

[53]  Lih-Yuan Deng,et al.  A RESOLUTION RANK CRITERION FOR SUPERSATURATED DESIGNS , 1999 .

[54]  Y. Ikebe,et al.  Construction of three-level supersaturated design , 1999 .

[55]  Dennis K. J. Lin,et al.  On the construction of multi-level supersaturated designs , 2000 .

[56]  Kai-Tai Fang,et al.  A new approach in constructing orthogonal and nearly orthogonal arrays , 2000 .

[57]  Min-Qian Liu,et al.  Construction of E(s2) optimal supersaturated designs using cyclic BIBDs , 2000 .

[58]  Kai-Tai Fang,et al.  Admissibility and minimaxity of the uniform design measure in nonparametric regression model , 2000 .

[59]  Kai-Tai Fang,et al.  A connection between uniformity and aberration in regular fractions of two-level factorials , 2000 .

[60]  G. Geoffrey Vining,et al.  Statistical process monitoring and optimization , 2000 .

[61]  Yi-Zeng Liang,et al.  The effects of different experimental designs on parameter estimation in the kinetics of a reversible chemical reaction , 2000 .

[62]  Chang-Xing Ma,et al.  THE USEFULNESS OF UNIFORMITY IN EXPERIMENTAL DESIGN , 2000 .

[63]  J HickernellF,et al.  Discrepancy Measures of Uniformity , 2000 .

[64]  Yong Zhang,et al.  Uniform Design: Theory and Application , 2000, Technometrics.

[65]  K. Fang,et al.  On uniform design of experiments with restricted mixtures and generation of uniform distribution on some domains , 2000 .

[66]  Kai-Tai Fang,et al.  A note on generalized aberration in factorial designs , 2001 .

[67]  Yizeng Liang,et al.  Uniform design and its applications in chemistry and chemical engineering , 2001 .

[68]  Chang-Xing Ma,et al.  On the Isomorphism of Fractional Factorial Designs , 2001, J. Complex..

[69]  Angela M. Dean,et al.  EQUIVALENCE OF FRACTIONAL FACTORIAL DESIGNS , 2001 .

[70]  Jian An,et al.  Quasi-regression , 2001, J. Complex..

[71]  Timothy W. Simpson,et al.  Sampling Strategies for Computer Experiments: Design and Analysis , 2001 .

[72]  Chang-Xing Ma,et al.  Wrap-Around L2-Discrepancy of Random Sampling, Latin Hypercube and Uniform Designs , 2001, J. Complex..

[73]  Min-Qian Liu,et al.  Using Discrepancy to Evaluate Fractional Factorial Designs , 2002 .

[74]  Peter Winker,et al.  Centered L2-discrepancy of random sampling and Latin hypercube design, and construction of uniform designs , 2002, Math. Comput..

[75]  Kai-Tai Fang,et al.  Uniformity in Fractional Factorials , 2002 .

[76]  F. J. Hickernell,et al.  ${E(s^2)}$-Optimality and Minimum Discrepancy in 2-level Supersaturated Designs , 2002 .

[77]  F. J. Hickernell,et al.  Uniform designs limit aliasing , 2002 .

[78]  Kai-Tai Fang,et al.  Relationships Between Uniformity, Aberration and Correlation in Regular Fractions 3s-1 , 2002 .

[79]  Kai-Tai Fang,et al.  Some Applications of Quasi-Monte Carlo Methods in Statistics , 2002 .

[80]  Fred J. Hickernell,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2000 , 2002 .

[81]  Kai-Tai Fang,et al.  Construction of minimum generalized aberration designs , 2003 .

[82]  Dennis K. J. Lin,et al.  Optimal mixed-level supersaturated design , 2003 .

[83]  Kai-Tai Fang,et al.  A note on uniformity and orthogonality , 2003 .